Dynamic clamping induces rotation-to-beating transition of pinned filaments in gliding assays.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-05-01 Epub Date: 2025-05-07 DOI:10.1098/rsif.2024.0859
Amir Khosravanizadeh, Serge Dmitrieff
{"title":"Dynamic clamping induces rotation-to-beating transition of pinned filaments in gliding assays.","authors":"Amir Khosravanizadeh, Serge Dmitrieff","doi":"10.1098/rsif.2024.0859","DOIUrl":null,"url":null,"abstract":"<p><p>We used numerical simulations to investigate how properties of motor proteins control the dynamical behaviour of driven flexible filaments. A filament on top of a patch of anchored motor proteins is pinned at one end, a setup referred to as a spiral gliding assay. There exists a variety of motor proteins with different properties. We found that when these properties are changed, this system generally can show three different regimes: (i) fluctuation, where the filament undergoes random fluctuations because the motors are unable to bend it, (ii) rotation, in which the filament bends and then moves continuously in one direction, and (iii) beating, where the filament rotation direction changes over time. We found that the transition between fluctuation and rotation occurs when motors exert a force sufficient to buckle the filament. The threshold force coincides with the second buckling mode of a filament undergoing a continuously distributed load. Moreover, we showed that when motors near the pinning point work close to their stall force, they cause dynamic clamping, leading to the beating regime. Rather than being imposed by experimental conditions, this clamping is transient and results from the coupling between filament mechanics and the collective behaviour of motors.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 226","pages":"20240859"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0859","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We used numerical simulations to investigate how properties of motor proteins control the dynamical behaviour of driven flexible filaments. A filament on top of a patch of anchored motor proteins is pinned at one end, a setup referred to as a spiral gliding assay. There exists a variety of motor proteins with different properties. We found that when these properties are changed, this system generally can show three different regimes: (i) fluctuation, where the filament undergoes random fluctuations because the motors are unable to bend it, (ii) rotation, in which the filament bends and then moves continuously in one direction, and (iii) beating, where the filament rotation direction changes over time. We found that the transition between fluctuation and rotation occurs when motors exert a force sufficient to buckle the filament. The threshold force coincides with the second buckling mode of a filament undergoing a continuously distributed load. Moreover, we showed that when motors near the pinning point work close to their stall force, they cause dynamic clamping, leading to the beating regime. Rather than being imposed by experimental conditions, this clamping is transient and results from the coupling between filament mechanics and the collective behaviour of motors.

动态夹紧诱导滑动试验中固定丝的旋转到跳动转变。
我们使用数值模拟来研究运动蛋白的特性如何控制驱动柔性细丝的动态行为。一个固定的马达蛋白片顶部的细丝被固定在一端,这种设置被称为螺旋滑动试验。存在着多种具有不同性质的运动蛋白。我们发现,当这些特性改变时,该系统通常可以显示三种不同的状态:(i)波动,其中灯丝经历随机波动,因为电机无法弯曲它;(ii)旋转,其中灯丝弯曲,然后在一个方向上连续移动;(iii)跳动,其中灯丝的旋转方向随着时间的推移而变化。我们发现,当电机施加足够的力使灯丝弯曲时,就会发生波动和旋转之间的转变。阈值力与连续分布载荷作用下纤维的第二屈曲模式一致。此外,我们表明,当电机附近的钉钉点工作接近其失速力,他们造成动态夹紧,导致跳动状态。而不是强加的实验条件,这种夹紧是短暂的,结果从丝力学和电机的集体行为之间的耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信