Message-passing neural network for magnetic phase transition simulation.

IF 2.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Shuhao Hu, Xinjian Ouyang, Zhilong Wang, Feng Zhang, Dawei Wang
{"title":"Message-passing neural network for magnetic phase transition simulation.","authors":"Shuhao Hu, Xinjian Ouyang, Zhilong Wang, Feng Zhang, Dawei Wang","doi":"10.1088/1361-648X/add4dc","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting magnetic phase transitions traditionally relies on a Hamiltonian model to capture key magnetic interactions. Recent advances in machine learning enables the development of a unified approach that can handle diverse magnetic systems without designing new Hamiltonians for each case. To this end, we employ message-passing neural network (MPNN) potentials to investigate magnetic phase transitions of two-dimensional chromium trihalidesCrX3(X = I, Br, Cl) . We achieve this by introducing a specialized MPNN with the ability to incorporate the magnetic degrees of freedom. This magnetic MPNN incorporates atomic magnetic moments directly into the message-passing process, enabling accurate modeling of potential energy surfaces in magnetic materials. This approach improves on our previous work, which had the same aim but used Behler-Parrinello neural network that relies on hand-crafted descriptors as the underlying universal magnetic Hamiltonian. It also adds the capability to treat magnetic degrees of freedom and atom displacement in a unified way. Using two-dimensionalCrX3as examples and combining the MPNN with the Landau-Lifshitz-Gilbert equation, we simulate ferromagnetic and antiferromagnetic phase transitions as a function of temperature. These results highlight the potential of MPNNs for advancing research in magnetic materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/add4dc","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting magnetic phase transitions traditionally relies on a Hamiltonian model to capture key magnetic interactions. Recent advances in machine learning enables the development of a unified approach that can handle diverse magnetic systems without designing new Hamiltonians for each case. To this end, we employ message-passing neural network (MPNN) potentials to investigate magnetic phase transitions of two-dimensional chromium trihalidesCrX3(X = I, Br, Cl) . We achieve this by introducing a specialized MPNN with the ability to incorporate the magnetic degrees of freedom. This magnetic MPNN incorporates atomic magnetic moments directly into the message-passing process, enabling accurate modeling of potential energy surfaces in magnetic materials. This approach improves on our previous work, which had the same aim but used Behler-Parrinello neural network that relies on hand-crafted descriptors as the underlying universal magnetic Hamiltonian. It also adds the capability to treat magnetic degrees of freedom and atom displacement in a unified way. Using two-dimensionalCrX3as examples and combining the MPNN with the Landau-Lifshitz-Gilbert equation, we simulate ferromagnetic and antiferromagnetic phase transitions as a function of temperature. These results highlight the potential of MPNNs for advancing research in magnetic materials.

磁相变仿真的消息传递神经网络。
预测磁相变传统上依赖于哈密顿模型来捕捉关键的磁相互作用。机器学习的最新进展为开发一种统一的方法提供了机会,该方法可以处理不同的磁系统,而无需为每种情况设计新的哈密顿量。为此,我们采用消息传递神经网络(MPNN)电位来研究二维三卤化铬CrX3 (X = I, Br, Cl)的磁相变。我们通过引入一个专门的MPNN来实现这一目标,该nn具有结合磁自由度的能力。这种磁性MPNN (MMPNN)将原子磁矩直接整合到信息传递过程中,从而能够准确地模拟磁性材料中的势能表面。这种方法改进了我们之前的工作,目标相同,但使用了依赖于手工制作的描述符作为底层通用磁哈密顿量的贝勒-帕里内洛(BP)神经网络。它还增加了以统一的方式处理磁性自由度和原子位移的能力。以二维CrX3为例,结合Landau-Lifshitz-Gilbert (LLG)方程,模拟了铁磁(FM)和反铁磁(AFM)相变随温度的变化规律。这些结果突出了信息传递神经网络在推进磁性材料研究方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信