Zhenlong Liu, Zhenchen Hou, Xiaoqing Hu, Shuang Ren, Qinwei Guo, Yan Xu, Xi Gong, Yingfang Ao
{"title":"[Arthroscopic tissue engineering scaffold repair for cartilage injuries].","authors":"Zhenlong Liu, Zhenchen Hou, Xiaoqing Hu, Shuang Ren, Qinwei Guo, Yan Xu, Xi Gong, Yingfang Ao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To standardize the operative procedure for tissue-engineered cartilage repair, by demonstrating surgical technique of arthroscopic implantation of decalcified cortex-cancellous bone scaffolds, and summarizing the surgical experience of the sports medicine department team at Peking University Third Hospital.</p><p><strong>Methods: </strong>This article elaborates on surgical techniques and skills, focusing on the unabridged implantation technology and surgical procedure of decalcified cortex-cancellous bone scaffolds under arthroscopy: First, the patient was placed in the supine position. After anesthesia had been established, the surgeon established an arthroscope and explored the damaged area under the scope. After confirming the size and location of the injury site, the surgeon cleaned the damaged cartilage, and also trimmed the edges of the cartilage to ensure that the cut surface was smooth and stable. the surgeon performed the micro-fracture surgery in the area of cartilage injury, and then measured the size of the injured area under the scope. Next, the surgeon manually trimmed the tissue-engineered scaffold based on the measurements taken under the arthroscope, and then directly implanted the scaffold using a sleeve. A honeycomb-shaped fixator was used to implant absorbable nails to fix the scaffold. After the scaffold was installed, the knee was repeatedly flexed and extended for 10-20 times to ensure stability and range of motion. Finally, the arthroscope was withdrawn and the wound was closed.</p><p><strong>Results: </strong>Decalcified cortex-cancellous bone scaffolds possessed unparalleled advantages over synthetic materials in terms of morphology and biomechanics. The cancellous bone part of the scaffold provided a three-dimensional, porous space for cell growth, while the cortical bone part offered the necessary mechanical strength. The surgery was performed entirely under arthroscopy to minimize invasiveness to the patient. Absorbable pins were used for fixation to ensure the stability of the scaffold. This technique could effectively improve the prognosis of the patients with cartilage injuries and standardized the surgical procedures for arthroscopic tissue-engineered scaffold operations in the patients with cartilage damage.</p><p><strong>Conclusion: </strong>With the standard arthroscopic tissue-engineered scaffold repair technique, it is possible to successfully repair damaged cartilage, alleviate symptoms in the short term, and provide a more ideal long-term prognosis. The author and their team explain the surgical procedures for tissue-engineered scaffolds under arthroscopy, with the aim of guiding future clinical practice.</p>","PeriodicalId":8790,"journal":{"name":"北京大学学报(医学版)","volume":"57 2","pages":"384-387"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"北京大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To standardize the operative procedure for tissue-engineered cartilage repair, by demonstrating surgical technique of arthroscopic implantation of decalcified cortex-cancellous bone scaffolds, and summarizing the surgical experience of the sports medicine department team at Peking University Third Hospital.
Methods: This article elaborates on surgical techniques and skills, focusing on the unabridged implantation technology and surgical procedure of decalcified cortex-cancellous bone scaffolds under arthroscopy: First, the patient was placed in the supine position. After anesthesia had been established, the surgeon established an arthroscope and explored the damaged area under the scope. After confirming the size and location of the injury site, the surgeon cleaned the damaged cartilage, and also trimmed the edges of the cartilage to ensure that the cut surface was smooth and stable. the surgeon performed the micro-fracture surgery in the area of cartilage injury, and then measured the size of the injured area under the scope. Next, the surgeon manually trimmed the tissue-engineered scaffold based on the measurements taken under the arthroscope, and then directly implanted the scaffold using a sleeve. A honeycomb-shaped fixator was used to implant absorbable nails to fix the scaffold. After the scaffold was installed, the knee was repeatedly flexed and extended for 10-20 times to ensure stability and range of motion. Finally, the arthroscope was withdrawn and the wound was closed.
Results: Decalcified cortex-cancellous bone scaffolds possessed unparalleled advantages over synthetic materials in terms of morphology and biomechanics. The cancellous bone part of the scaffold provided a three-dimensional, porous space for cell growth, while the cortical bone part offered the necessary mechanical strength. The surgery was performed entirely under arthroscopy to minimize invasiveness to the patient. Absorbable pins were used for fixation to ensure the stability of the scaffold. This technique could effectively improve the prognosis of the patients with cartilage injuries and standardized the surgical procedures for arthroscopic tissue-engineered scaffold operations in the patients with cartilage damage.
Conclusion: With the standard arthroscopic tissue-engineered scaffold repair technique, it is possible to successfully repair damaged cartilage, alleviate symptoms in the short term, and provide a more ideal long-term prognosis. The author and their team explain the surgical procedures for tissue-engineered scaffolds under arthroscopy, with the aim of guiding future clinical practice.
期刊介绍:
Beijing Da Xue Xue Bao Yi Xue Ban / Journal of Peking University (Health Sciences), established in 1959, is a national academic journal sponsored by Peking University, and its former name is Journal of Beijing Medical University. The coverage of the Journal includes basic medical sciences, clinical medicine, oral medicine, surgery, public health and epidemiology, pharmacology and pharmacy. Over the last few years, the Journal has published articles and reports covering major topics in the different special issues (e.g. research on disease genome, theory of drug withdrawal, mechanism and prevention of cardiovascular and cerebrovascular diseases, stomatology, orthopaedic, public health, urology and reproductive medicine). All the topics involve latest advances in medical sciences, hot topics in specific specialties, and prevention and treatment of major diseases.
The Journal has been indexed and abstracted by PubMed Central (PMC), MEDLINE/PubMed, EBSCO, Embase, Scopus, Chemical Abstracts (CA), Western Pacific Region Index Medicus (WPR), JSTChina, and almost all the Chinese sciences and technical index systems, including Chinese Science and Technology Paper Citation Database (CSTPCD), Chinese Science Citation Database (CSCD), China BioMedical Bibliographic Database (CBM), CMCI, Chinese Biological Abstracts, China National Academic Magazine Data-Base (CNKI), Wanfang Data (ChinaInfo), etc.