Accelerating antibody discovery and optimization with high-throughput experimentation and machine learning.

IF 9 2区 医学 Q1 CELL BIOLOGY
Ryo Matsunaga, Kouhei Tsumoto
{"title":"Accelerating antibody discovery and optimization with high-throughput experimentation and machine learning.","authors":"Ryo Matsunaga, Kouhei Tsumoto","doi":"10.1186/s12929-025-01141-x","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of high-throughput experimentation and machine learning is transforming data-driven antibody engineering, revolutionizing the discovery and optimization of antibody therapeutics. These approaches employ extensive datasets comprising antibody sequences, structures, and functional properties to train predictive models that enable rational design. This review highlights the significant advancements in data acquisition and feature extraction, emphasizing the necessity of capturing both sequence and structural information. We illustrate how machine learning models, including protein language models, are used not only to enhance affinity but also to optimize other crucial therapeutic properties, such as specificity, stability, viscosity, and manufacturability. Furthermore, we provide practical examples and case studies to demonstrate how the synergy between experimental and computational approaches accelerates antibody engineering. Finally, this review discusses the remaining challenges in fully realizing the potential of artificial intelligence (AI)-powered antibody discovery pipelines to expedite therapeutic development.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"46"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-025-01141-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of high-throughput experimentation and machine learning is transforming data-driven antibody engineering, revolutionizing the discovery and optimization of antibody therapeutics. These approaches employ extensive datasets comprising antibody sequences, structures, and functional properties to train predictive models that enable rational design. This review highlights the significant advancements in data acquisition and feature extraction, emphasizing the necessity of capturing both sequence and structural information. We illustrate how machine learning models, including protein language models, are used not only to enhance affinity but also to optimize other crucial therapeutic properties, such as specificity, stability, viscosity, and manufacturability. Furthermore, we provide practical examples and case studies to demonstrate how the synergy between experimental and computational approaches accelerates antibody engineering. Finally, this review discusses the remaining challenges in fully realizing the potential of artificial intelligence (AI)-powered antibody discovery pipelines to expedite therapeutic development.

通过高通量实验和机器学习加速抗体发现和优化。
高通量实验和机器学习的整合正在改变数据驱动的抗体工程,彻底改变抗体治疗方法的发现和优化。这些方法采用广泛的数据集,包括抗体序列、结构和功能属性,以训练预测模型,从而实现合理的设计。本文综述了数据采集和特征提取的重要进展,强调了同时捕获序列和结构信息的必要性。我们说明了机器学习模型,包括蛋白质语言模型,如何不仅用于增强亲和力,而且还用于优化其他关键的治疗特性,如特异性、稳定性、粘度和可制造性。此外,我们提供了实际的例子和案例研究,以证明实验和计算方法之间的协同作用如何加速抗体工程。最后,本文讨论了充分实现人工智能(AI)驱动的抗体发现管道的潜力以加速治疗开发的剩余挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信