Targeted cancer therapy potential of quercetin-conjugated with folic acid-modified nanocrystalline cellulose nanoparticles: a study on AGS and A2780 cell lines.
IF 3.5 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Targeted cancer therapy potential of quercetin-conjugated with folic acid-modified nanocrystalline cellulose nanoparticles: a study on AGS and A2780 cell lines.","authors":"Mozhgan Soltani, Negar Ahmadzadeh, Hasti Nasiraei Haghighi, Niloufar Khatamian, Masoud Homayouni Tabrizi","doi":"10.1186/s12896-025-00962-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the effects of quercetin-conjugated nanocrystalline cellulose/cetyltrimethylammonium bromide/folic acid nanoparticles (NCC/CTAB/FA NPs) on AGS and A2780 cancer cell lines, focusing on their cytotoxicity and antioxidant capacity. Dynamic light scattering (DLS) analysis revealed an average particle size of 388.70 nm, suitable for cellular uptake and release kinetics. The NCC/CTAB/FA NPs exhibited a rod and spherical morphology and uniform distribution, as confirmed by field emission scanning electron microscopy (FESEM). Fourier-transform infrared (FTIR) spectroscopy confirmed the successful synthesis and functional group integration, supporting the NPs' ability for drug delivery. The encapsulation efficiency value was 81.17%, demonstrating the effective incorporation of Quercetin. Cytotoxicity assays indicated significant reductions in cell viability for AGS and A2780 cells with IC<sub>50</sub> values of 3.2 µg/mL and 16.04 µg/mL, respectively, while HDF cells exhibited higher viability. Flow cytometry analysis revealed a dose-dependent induction of apoptosis in AGS cells, supported by changes in gene expression related to apoptosis and inflammation. Furthermore, antioxidant capacity assays demonstrated practical free radical scavenging abilities, with IC<sub>50</sub> values of 151.65 µg/mL for ABTS and 349.54 µg/mL for DPPH. NCC/CTAB/FA/Quercetin NPs exhibit promising characteristics for targeted cancer therapy and antioxidant applications.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"25 1","pages":"29"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-025-00962-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of quercetin-conjugated nanocrystalline cellulose/cetyltrimethylammonium bromide/folic acid nanoparticles (NCC/CTAB/FA NPs) on AGS and A2780 cancer cell lines, focusing on their cytotoxicity and antioxidant capacity. Dynamic light scattering (DLS) analysis revealed an average particle size of 388.70 nm, suitable for cellular uptake and release kinetics. The NCC/CTAB/FA NPs exhibited a rod and spherical morphology and uniform distribution, as confirmed by field emission scanning electron microscopy (FESEM). Fourier-transform infrared (FTIR) spectroscopy confirmed the successful synthesis and functional group integration, supporting the NPs' ability for drug delivery. The encapsulation efficiency value was 81.17%, demonstrating the effective incorporation of Quercetin. Cytotoxicity assays indicated significant reductions in cell viability for AGS and A2780 cells with IC50 values of 3.2 µg/mL and 16.04 µg/mL, respectively, while HDF cells exhibited higher viability. Flow cytometry analysis revealed a dose-dependent induction of apoptosis in AGS cells, supported by changes in gene expression related to apoptosis and inflammation. Furthermore, antioxidant capacity assays demonstrated practical free radical scavenging abilities, with IC50 values of 151.65 µg/mL for ABTS and 349.54 µg/mL for DPPH. NCC/CTAB/FA/Quercetin NPs exhibit promising characteristics for targeted cancer therapy and antioxidant applications.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.