SMFF-DTA: using a sequential multi-feature fusion method with multiple attention mechanisms to predict drug-target binding affinity.

IF 4.4 1区 生物学 Q1 BIOLOGY
Xun Wang, Zhijun Xia, Runqiu Feng, Tongyu Han, Hanyu Wang, Wenqian Yu, Xingguang Wang
{"title":"SMFF-DTA: using a sequential multi-feature fusion method with multiple attention mechanisms to predict drug-target binding affinity.","authors":"Xun Wang, Zhijun Xia, Runqiu Feng, Tongyu Han, Hanyu Wang, Wenqian Yu, Xingguang Wang","doi":"10.1186/s12915-025-02222-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Drug-target binding affinity (DTA) prediction can accelerate the drug screening process, and deep learning techniques have been used in all facets of drug research. Affinity prediction based on deep learning methods has proven crucial to drug discovery, design, and reuse. Among these, the sequence-based approach using 1D sequences of drugs and targets as inputs typically results in the loss of structural information, whereas the structure-based method frequently results in increased computing costs due to the intricate structure of the molecule graph.</p><p><strong>Results: </strong>We propose a sequential multifeature fusion method (SMFF-DTA) to achieve efficient and accurate prediction. SMFF-DTA uses sequential methods to represent the structural information and physicochemical properties of drugs and targets and introduces multiple attention blocks to capture interaction features closely.</p><p><strong>Conclusions: </strong>As demonstrated by our extensive studies, SMFF-DTA outperforms the other methods in terms of various metrics, showing its advantages and effectiveness as a drug-target binding affinity predictor.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"120"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02222-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Drug-target binding affinity (DTA) prediction can accelerate the drug screening process, and deep learning techniques have been used in all facets of drug research. Affinity prediction based on deep learning methods has proven crucial to drug discovery, design, and reuse. Among these, the sequence-based approach using 1D sequences of drugs and targets as inputs typically results in the loss of structural information, whereas the structure-based method frequently results in increased computing costs due to the intricate structure of the molecule graph.

Results: We propose a sequential multifeature fusion method (SMFF-DTA) to achieve efficient and accurate prediction. SMFF-DTA uses sequential methods to represent the structural information and physicochemical properties of drugs and targets and introduces multiple attention blocks to capture interaction features closely.

Conclusions: As demonstrated by our extensive studies, SMFF-DTA outperforms the other methods in terms of various metrics, showing its advantages and effectiveness as a drug-target binding affinity predictor.

SMFF-DTA:采用序列多特征融合方法,结合多种注意机制预测药物-靶点结合亲和力。
背景:药物靶标结合亲和力(drug -target binding affinity, DTA)预测可以加速药物筛选过程,深度学习技术已应用于药物研究的各个方面。基于深度学习方法的亲和预测已被证明对药物发现、设计和重用至关重要。其中,使用药物和靶点的一维序列作为输入的基于序列的方法通常会导致结构信息的丢失,而基于结构的方法由于分子图的复杂结构往往会导致计算成本的增加。结果:我们提出了一种序列多特征融合方法(SMFF-DTA)来实现高效、准确的预测。SMFF-DTA采用序列方法来表示药物和靶标的结构信息和理化性质,并引入多个注意块来密切捕捉相互作用特征。结论:我们的大量研究表明,SMFF-DTA在各种指标上都优于其他方法,显示了其作为药物靶点结合亲和力预测因子的优势和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信