{"title":"S-acylation in apoptotic and non-apoptotic cell death: a central regulator of membrane dynamics and protein function.","authors":"Rojae Manhertz-Patterson, G Ekin Atilla-Gokcumen","doi":"10.1042/BST20253012","DOIUrl":null,"url":null,"abstract":"<p><p>Protein lipidation is a collection of important post-translational modifications that modulate protein localization and stability. Protein lipidation affects protein function by facilitating interactions with cellular membranes, changing the local environment of protein interactions. Among these modifications, S-acylation has emerged as a key regulator of various cellular processes, including different forms of cell death. In this mini-review, we highlight the role of S-acylation in apoptosis and its emerging contributions to necroptosis and pyroptosis. While traditionally associated with the incorporation of palmitic acid (palmitoylation), recent findings indicate that other fatty acids can also participate in S-acylation, expanding its functional repertoire. In apoptosis, S-acylation influences the localization and function of key regulators such as Bcl-2-associated X protein and other proteins modulating their role in mitochondrial permeabilization and death receptor signaling. Similarly, in necroptosis, S-acylation of mixed lineage kinase domain-like protein (MLKL) with palmitic acid and very long-chain fatty acids enhances membrane binding and membrane permeabilization, contributing to cell death and inflammatory responses. Recent studies also highlight the role of S-acylation in pyroptosis, where S-acylated gasdermin D facilitates membrane localization and pore assembly upon inflammasome activation. Blocking palmitoylation has shown to suppress pyroptosis and cytokine release, reducing inflammatory activity and tissue damage in septic models. Collectively, these findings underscore S-acylation as a shared and important regulatory mechanism across cell death pathways affecting membrane association of key signaling proteins and membrane dynamics, and offer insights into the spatial and temporal control of protein function.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"53 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20253012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein lipidation is a collection of important post-translational modifications that modulate protein localization and stability. Protein lipidation affects protein function by facilitating interactions with cellular membranes, changing the local environment of protein interactions. Among these modifications, S-acylation has emerged as a key regulator of various cellular processes, including different forms of cell death. In this mini-review, we highlight the role of S-acylation in apoptosis and its emerging contributions to necroptosis and pyroptosis. While traditionally associated with the incorporation of palmitic acid (palmitoylation), recent findings indicate that other fatty acids can also participate in S-acylation, expanding its functional repertoire. In apoptosis, S-acylation influences the localization and function of key regulators such as Bcl-2-associated X protein and other proteins modulating their role in mitochondrial permeabilization and death receptor signaling. Similarly, in necroptosis, S-acylation of mixed lineage kinase domain-like protein (MLKL) with palmitic acid and very long-chain fatty acids enhances membrane binding and membrane permeabilization, contributing to cell death and inflammatory responses. Recent studies also highlight the role of S-acylation in pyroptosis, where S-acylated gasdermin D facilitates membrane localization and pore assembly upon inflammasome activation. Blocking palmitoylation has shown to suppress pyroptosis and cytokine release, reducing inflammatory activity and tissue damage in septic models. Collectively, these findings underscore S-acylation as a shared and important regulatory mechanism across cell death pathways affecting membrane association of key signaling proteins and membrane dynamics, and offer insights into the spatial and temporal control of protein function.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.