Extracellular membrane particles en route to the nucleus - exploring the VOR complex.

IF 4.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aurelio Lorico, Mark F Santos, Jana Karbanová, Denis Corbeil
{"title":"Extracellular membrane particles en route to the nucleus - exploring the VOR complex.","authors":"Aurelio Lorico, Mark F Santos, Jana Karbanová, Denis Corbeil","doi":"10.1042/BST20253005","DOIUrl":null,"url":null,"abstract":"<p><p>Intercellular communication is an essential hallmark of multicellular organisms for their development and adult tissue homeostasis. Over the past two decades, attention has been focused on communication mechanisms based on various membrane structures, as illustrated by the burst of scientific literature in the field of extracellular vesicles (EVs). These lipid bilayer-bound nano- or microparticles, as vehicle-like devices, act as regulators in various biological and physiological processes. When EVs are internalized by recipient cells, their membrane and cytoplasmic cargoes can interfere with cellular activities, affecting pathways that regulate cell proliferation, differentiation, and migration. In cancer, EVs can transfer oncogenic factors, stimulate neo-angiogenesis and immunosuppression, reprogram stromal cells, and confer drug resistance traits, thereby remodeling the surrounding microenvironment. Although the mechanisms underlying EV biogenesis and uptake are now better understood, little is known about the spatiotemporal mechanism(s) of their actions after internalization. In this respect, we have shown that a fraction of endocytosed EVs reaches the nuclear compartment via the VOR (VAP-A-ORP3-Rab7) complex-mediated docking of late endosomes to the outer nuclear membrane in the nucleoplasmic reticulum, positioning and facilitating the transfer of EV cargoes into the nucleoplasm via nuclear pores. Here, we highlight the EV heterogeneity, the cellular pathways governing EV release and uptake by donor and recipient cells, respectively, and focus on a novel intracellular pathway leading to the nuclear transfer of EV cargoes. We will discuss how to intercept it, which could open up new avenues for clinical applications in which EVs and other small extracellular particles (e.g., retroviruses) are implicated.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"529-546"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20253005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intercellular communication is an essential hallmark of multicellular organisms for their development and adult tissue homeostasis. Over the past two decades, attention has been focused on communication mechanisms based on various membrane structures, as illustrated by the burst of scientific literature in the field of extracellular vesicles (EVs). These lipid bilayer-bound nano- or microparticles, as vehicle-like devices, act as regulators in various biological and physiological processes. When EVs are internalized by recipient cells, their membrane and cytoplasmic cargoes can interfere with cellular activities, affecting pathways that regulate cell proliferation, differentiation, and migration. In cancer, EVs can transfer oncogenic factors, stimulate neo-angiogenesis and immunosuppression, reprogram stromal cells, and confer drug resistance traits, thereby remodeling the surrounding microenvironment. Although the mechanisms underlying EV biogenesis and uptake are now better understood, little is known about the spatiotemporal mechanism(s) of their actions after internalization. In this respect, we have shown that a fraction of endocytosed EVs reaches the nuclear compartment via the VOR (VAP-A-ORP3-Rab7) complex-mediated docking of late endosomes to the outer nuclear membrane in the nucleoplasmic reticulum, positioning and facilitating the transfer of EV cargoes into the nucleoplasm via nuclear pores. Here, we highlight the EV heterogeneity, the cellular pathways governing EV release and uptake by donor and recipient cells, respectively, and focus on a novel intracellular pathway leading to the nuclear transfer of EV cargoes. We will discuss how to intercept it, which could open up new avenues for clinical applications in which EVs and other small extracellular particles (e.g., retroviruses) are implicated.

胞外膜颗粒在通往细胞核的途中-探索VOR复合体。
细胞间通讯是多细胞生物发育和成体组织稳态的重要标志。在过去的二十年里,人们的注意力一直集中在基于各种膜结构的通讯机制上,如细胞外囊泡(EVs)领域的科学文献的爆发。这些脂质双分子层结合的纳米或微粒,作为类似载体的装置,在各种生物和生理过程中起调节作用。当ev被受体细胞内化时,它们的膜和细胞质货物会干扰细胞活动,影响调节细胞增殖、分化和迁移的途径。在癌症中,ev可以转移致癌因子,刺激新血管生成和免疫抑制,重新编程基质细胞,并赋予耐药特性,从而重塑周围的微环境。虽然目前对EV的生物发生和吸收机制有了更好的了解,但对其内化后的时空机制知之甚少。在这方面,我们已经证明,一部分内吞噬的EV通过VOR (VAP-A-ORP3-Rab7)复合物介导的晚期核内体与核质网外核膜的对接到达核室,定位并促进EV货物通过核孔转移到核质中。在这里,我们强调了EV的异质性,分别控制EV释放和受体细胞摄取的细胞途径,并重点关注导致EV货物核转移的一种新的细胞内途径。我们将讨论如何拦截它,这可能为涉及ev和其他小细胞外颗粒(例如逆转录病毒)的临床应用开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信