Yasmin Neves Vieira Sabino, Thaı S Costa de Almeida, Cinthia Alvim Faria, Sthefania Dalva da Cunha Rezende, Juliana Pereira Costa Miranda, Aline Dias Paiva, Alessandra Barbosa Ferreira Machado
{"title":"Antivirulence effects of lactic acid bacteria: pioneering new probiotic applications.","authors":"Yasmin Neves Vieira Sabino, Thaı S Costa de Almeida, Cinthia Alvim Faria, Sthefania Dalva da Cunha Rezende, Juliana Pereira Costa Miranda, Aline Dias Paiva, Alessandra Barbosa Ferreira Machado","doi":"10.1163/18762891-bja00063","DOIUrl":null,"url":null,"abstract":"<p><p>Lactic acid bacteria are a group of microorganisms recognised for their health-promoting properties, with several strains being commercially utilised as probiotics. Probiotics offer numerous benefits, including modulation of the immune system, enhancement of nutrient absorption, regulation of intestinal microbiota, protection against intestinal pathogens, and strengthening of the intestinal barrier. However, the precise mechanisms by which probiotics exert their effects remain incompletely understood. In recent years, research into new therapeutic applications for probiotics has intensified, driven by the urgent need for strategies to combat antibiotic-resistant bacteria. Among the newly discovered properties of probiotics is their ability to produce antivirulence compounds. These compounds reduce the virulence of pathogens without inhibiting microbial growth, thereby imposing less selective pressure for the development of resistance compared to traditional antibiotics. Given the potential for these compounds in clinical settings, this study aims to provide a comprehensive review of the antivirulence activities of probiotics, with particular focus on lactic acid bacteria. It discusses their effects on two-component and quorum sensing systems, which regulate the simultaneous expression of various virulence genes, as well as their anti-adhesion, anti-biofilm, anti-toxin, and anti-enzymatic activities against a range of pathogens. Thus, this review offers insight into the novel mechanisms by which lactic acid bacteria contribute to health, potentially broadening their applications.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-15"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactic acid bacteria are a group of microorganisms recognised for their health-promoting properties, with several strains being commercially utilised as probiotics. Probiotics offer numerous benefits, including modulation of the immune system, enhancement of nutrient absorption, regulation of intestinal microbiota, protection against intestinal pathogens, and strengthening of the intestinal barrier. However, the precise mechanisms by which probiotics exert their effects remain incompletely understood. In recent years, research into new therapeutic applications for probiotics has intensified, driven by the urgent need for strategies to combat antibiotic-resistant bacteria. Among the newly discovered properties of probiotics is their ability to produce antivirulence compounds. These compounds reduce the virulence of pathogens without inhibiting microbial growth, thereby imposing less selective pressure for the development of resistance compared to traditional antibiotics. Given the potential for these compounds in clinical settings, this study aims to provide a comprehensive review of the antivirulence activities of probiotics, with particular focus on lactic acid bacteria. It discusses their effects on two-component and quorum sensing systems, which regulate the simultaneous expression of various virulence genes, as well as their anti-adhesion, anti-biofilm, anti-toxin, and anti-enzymatic activities against a range of pathogens. Thus, this review offers insight into the novel mechanisms by which lactic acid bacteria contribute to health, potentially broadening their applications.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits