Xin Li, Maria Rossing, Ana Moisés da Silva, Muthiah Bose, Thorkell Gudjónsson, Jan Benada, Jayashree Thatte, Jens Vilstrup Johansen, Judit Börcsök, Hanneke van der Gulden, Ji-Ying Song, Renée Menezes, Asma Tajik, Lucía Sena, Zoltan Szallasi, Morten Frödin, Jos Jonkers, Finn Cilius Nielsen, Claus Storgaard Sørensen
{"title":"G6PC3 promotes genome maintenance and is a candidate mammary tumor suppressor.","authors":"Xin Li, Maria Rossing, Ana Moisés da Silva, Muthiah Bose, Thorkell Gudjónsson, Jan Benada, Jayashree Thatte, Jens Vilstrup Johansen, Judit Börcsök, Hanneke van der Gulden, Ji-Ying Song, Renée Menezes, Asma Tajik, Lucía Sena, Zoltan Szallasi, Morten Frödin, Jos Jonkers, Finn Cilius Nielsen, Claus Storgaard Sørensen","doi":"10.1172/jci.insight.186747","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in genome maintenance factors drive sporadic and hereditary breast cancers. Here, we searched for potential drivers based on germline DNA analysis from a cohort consisting of patients with early-onset breast cancer negative for BRCA1/BRCA2 mutations. This revealed candidate genes that subsequently were subjected to RNA interference-based (RNAi-based) phenotype screens to reveal genome integrity effects. We identified several genes with functional roles in genome maintenance, including Glucose-6-Phosphatase Catalytic Subunit 3 (G6PC3), SMC4, and CCDC108. Notably, G6PC3-deficient cells exhibited increased levels of γH2AX and micronuclei formation, along with defects in homologous recombination (HR) repair. Consistent with these observations, G6PC3 was required for the efficient recruitment of BRCA1 to sites of DNA double-strand breaks (DSBs). RNA-Seq analysis revealed that G6PC3 promotes the expression of multiple homologous recombination repair genes, including BRCA1. Through CRISPR-Select functional-genetic phenotype analysis of G6PC3 germline mutations, we identified 2 germline G6PC3 variants displaying partial loss of function. Furthermore, our study demonstrated that G6pc3 deficiency accelerates mammary tumor formation induced by Trp53 loss in mice. In conclusion, our cohort-based functional analysis has unveiled genome maintenance factors and identified G6PC3 as a potential candidate tumor suppressor in breast cancer.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.186747","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations in genome maintenance factors drive sporadic and hereditary breast cancers. Here, we searched for potential drivers based on germline DNA analysis from a cohort consisting of patients with early-onset breast cancer negative for BRCA1/BRCA2 mutations. This revealed candidate genes that subsequently were subjected to RNA interference-based (RNAi-based) phenotype screens to reveal genome integrity effects. We identified several genes with functional roles in genome maintenance, including Glucose-6-Phosphatase Catalytic Subunit 3 (G6PC3), SMC4, and CCDC108. Notably, G6PC3-deficient cells exhibited increased levels of γH2AX and micronuclei formation, along with defects in homologous recombination (HR) repair. Consistent with these observations, G6PC3 was required for the efficient recruitment of BRCA1 to sites of DNA double-strand breaks (DSBs). RNA-Seq analysis revealed that G6PC3 promotes the expression of multiple homologous recombination repair genes, including BRCA1. Through CRISPR-Select functional-genetic phenotype analysis of G6PC3 germline mutations, we identified 2 germline G6PC3 variants displaying partial loss of function. Furthermore, our study demonstrated that G6pc3 deficiency accelerates mammary tumor formation induced by Trp53 loss in mice. In conclusion, our cohort-based functional analysis has unveiled genome maintenance factors and identified G6PC3 as a potential candidate tumor suppressor in breast cancer.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.