Exosomes derived from human umbilical cord blood mesenchymal stem cells protect against blue light-induced damage to retinal pigment epithelial cells by inhibiting FGF2 expression.
IF 2 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Exosomes derived from human umbilical cord blood mesenchymal stem cells protect against blue light-induced damage to retinal pigment epithelial cells by inhibiting FGF2 expression.","authors":"Guang-Ming Liu, Yan Liu","doi":"10.1007/s10616-025-00752-4","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is a debilitating retinal disorder that may lead to progressive vision loss. One contributing factor to AMD pathogenesis is excessive blue light (BL) exposure. In this study, we investigated the therapeutic potential of exosomes derived from human umbilical cord blood mesenchymal stem cells (hUCMSC-EXs) in addressing BL-induced damage to ARPE-19 human retinal pigment epithelial (RPE) cells and explored the underlying mechanisms. Our findings revealed that BL exposure induced morphological alterations in ARPE-19 cells, accompanied by a time-dependent decline in cell viability, increased apoptosis, heightened oxidative stress, and inflammatory responses; however, hUCMSC-EXs dose-dependently mitigated BL-induced ARPE-19 cell damage. Interestingly, hUCMSC-EXs were found to suppress the upregulation of fibroblast growth factor 2 (FGF2) in BL-exposed ARPE-19 cells. Furthermore, FGF2 overexpression partially counteracted the inhibitory effects of hUCMSC-EXs on FGF2 expression and compromised the protective benefits of hUCMSC-EXs against BL-induced ARPE-19 cell damage. In conclusion, our results suggest that hUCMSC-EXs shield ARPE-19 cells from BL-induced harm by inhibiting FGF2 expression.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 3","pages":"88"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982010/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00752-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related macular degeneration (AMD) is a debilitating retinal disorder that may lead to progressive vision loss. One contributing factor to AMD pathogenesis is excessive blue light (BL) exposure. In this study, we investigated the therapeutic potential of exosomes derived from human umbilical cord blood mesenchymal stem cells (hUCMSC-EXs) in addressing BL-induced damage to ARPE-19 human retinal pigment epithelial (RPE) cells and explored the underlying mechanisms. Our findings revealed that BL exposure induced morphological alterations in ARPE-19 cells, accompanied by a time-dependent decline in cell viability, increased apoptosis, heightened oxidative stress, and inflammatory responses; however, hUCMSC-EXs dose-dependently mitigated BL-induced ARPE-19 cell damage. Interestingly, hUCMSC-EXs were found to suppress the upregulation of fibroblast growth factor 2 (FGF2) in BL-exposed ARPE-19 cells. Furthermore, FGF2 overexpression partially counteracted the inhibitory effects of hUCMSC-EXs on FGF2 expression and compromised the protective benefits of hUCMSC-EXs against BL-induced ARPE-19 cell damage. In conclusion, our results suggest that hUCMSC-EXs shield ARPE-19 cells from BL-induced harm by inhibiting FGF2 expression.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.