Identification of druggable binding sites and small molecules as modulators of TMC1.

IF 5.2 1区 生物学 Q1 BIOLOGY
Pedro De-la-Torre, Claudia Martínez-García, Paul Gratias, Matthew Mun, Paula Santana, Nurunisa Akyuz, Wendy González, Artur A Indzhykulian, David Ramírez
{"title":"Identification of druggable binding sites and small molecules as modulators of TMC1.","authors":"Pedro De-la-Torre, Claudia Martínez-García, Paul Gratias, Matthew Mun, Paula Santana, Nurunisa Akyuz, Wendy González, Artur A Indzhykulian, David Ramírez","doi":"10.1038/s42003-025-07943-x","DOIUrl":null,"url":null,"abstract":"<p><p>Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. To date, our understanding of how small-molecule modulators interact with TMCs remains limited, hampering the discovery of novel drugs. Here, we propose a structure-based drug screening approach, integrating 3D-pharmacophore modeling, molecular dynamics simulations of the TMC1 + CIB2 + TMIE complex, and experimental validation. Our pipeline successfully identified three potential drug-binding sites within the TMC1 pore, phospholipids, and key amino acids involved in the binding of several compounds, as well as FDA-approved drugs that reduced dye uptake in cultured cochlear explants. Our pipeline offers a broad application for discovering modulators for mechanosensitive ion channels.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"742"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075566/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07943-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. To date, our understanding of how small-molecule modulators interact with TMCs remains limited, hampering the discovery of novel drugs. Here, we propose a structure-based drug screening approach, integrating 3D-pharmacophore modeling, molecular dynamics simulations of the TMC1 + CIB2 + TMIE complex, and experimental validation. Our pipeline successfully identified three potential drug-binding sites within the TMC1 pore, phospholipids, and key amino acids involved in the binding of several compounds, as well as FDA-approved drugs that reduced dye uptake in cultured cochlear explants. Our pipeline offers a broad application for discovering modulators for mechanosensitive ion channels.

TMC1可药物结合位点和小分子调节剂的鉴定。
我们的听力和保持平衡的能力依赖于内耳感觉毛细胞的正常功能,这些毛细胞通过由TMC1/2蛋白组成的机电换能器(MET)通道将机械刺激转化为电信号。然而,治疗性使用耳毒性药物,如氨基糖苷类和顺铂,可通过MET通道进入毛细胞,往往导致严重的听觉和前庭功能障碍。迄今为止,我们对小分子调节剂如何与tmc相互作用的理解仍然有限,阻碍了新药的发现。在此,我们提出了一种基于结构的药物筛选方法,将3d药效团建模、TMC1 + CIB2 + TMIE复合物的分子动力学模拟和实验验证相结合。我们的产品线成功地确定了TMC1孔内的三个潜在药物结合位点、磷脂和参与几种化合物结合的关键氨基酸,以及fda批准的减少人工耳蜗中染料摄取的药物。我们的管道为发现机械敏感离子通道的调制器提供了广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信