{"title":"Exploring the anticancer potential of green synthesized Zn/Cu nanocomposites from olive leaves against lung cancer.","authors":"Jing Sun, Shu Mei Tang, Jing Sun, Wei Gao","doi":"10.1186/s41065-025-00426-3","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer remains one of the leading causes of cancer-related death worldwide, with a significant number of patients succumbing to the disease each year. Olea europaea, commonly known as the olive tree, offers a range of health benefits due to its rich content of antioxidants. In the present study, we have reported the green synthesis of a bimetallic nanocomposite of zinc and copper using the leaf extract of Olea europaea (Zn/Cu NCs@ Olea europaea). The nanoparticles were characterized using common chemical techniques. The antioxidant activity of Zn/Cu NCs@ Olea europaea was evaluated using the DPPH assay. The cytotoxicity and anti-lung cancer activity of Zn/Cu NCs@ Olea europaea were investigated using the MTT assay. The results of XRD analysis and FE-SEM imaging showed a crystalline structure for Zn/Cu NCs@ Olea europaea with a semi-spherical morphology and an average size of 49.37 nm. Zn/Cu NCs@ Olea europaea scavenged the free radical DPPH with an IC<sub>50</sub> of 363.42 ± 5.02 µg/mL. Furthermore, Zn/Cu NCs@ Olea europaea exhibited acceptable anti-lung cancer activity by preventing growth in the cell lines SK-MES-1, A-549, and LK-2 with IC<sub>50</sub> of 154.00 ± 1.83, 228.83 ± 10.59, and 250.55 ± 8.04 µg/mL respectively. The NPs were inactive against the normal cell lines of HUVEC even at high concentrations. The results of the study indicate that Zn/Cu NCs@ Olea europaea, which is green synthesized with a sufficient nano size, can be considered a potent anti-lung cancer agent.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"65"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00426-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer remains one of the leading causes of cancer-related death worldwide, with a significant number of patients succumbing to the disease each year. Olea europaea, commonly known as the olive tree, offers a range of health benefits due to its rich content of antioxidants. In the present study, we have reported the green synthesis of a bimetallic nanocomposite of zinc and copper using the leaf extract of Olea europaea (Zn/Cu NCs@ Olea europaea). The nanoparticles were characterized using common chemical techniques. The antioxidant activity of Zn/Cu NCs@ Olea europaea was evaluated using the DPPH assay. The cytotoxicity and anti-lung cancer activity of Zn/Cu NCs@ Olea europaea were investigated using the MTT assay. The results of XRD analysis and FE-SEM imaging showed a crystalline structure for Zn/Cu NCs@ Olea europaea with a semi-spherical morphology and an average size of 49.37 nm. Zn/Cu NCs@ Olea europaea scavenged the free radical DPPH with an IC50 of 363.42 ± 5.02 µg/mL. Furthermore, Zn/Cu NCs@ Olea europaea exhibited acceptable anti-lung cancer activity by preventing growth in the cell lines SK-MES-1, A-549, and LK-2 with IC50 of 154.00 ± 1.83, 228.83 ± 10.59, and 250.55 ± 8.04 µg/mL respectively. The NPs were inactive against the normal cell lines of HUVEC even at high concentrations. The results of the study indicate that Zn/Cu NCs@ Olea europaea, which is green synthesized with a sufficient nano size, can be considered a potent anti-lung cancer agent.
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.