Continuous-space occupancy models.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf055
Wilson J Wright, Mevin B Hooten
{"title":"Continuous-space occupancy models.","authors":"Wilson J Wright, Mevin B Hooten","doi":"10.1093/biomtc/ujaf055","DOIUrl":null,"url":null,"abstract":"<p><p>Occupancy models are used to infer species distributions over large spatial extents while accounting for imperfect detection. Current approaches, however, are unable to model species occurrence over continuous spatial domains while accounting for the discrete spatial domain of the observed data. We develop a new class of spatial occupancy models that embeds a change of spatial support between the observed data and occurrence process. We use a clipped Gaussian process to represent species occurrence in continuous space, which can provide inferences at a finer resolution than the observed occupancy data. Our approach is beneficial because it allows for more realistic models of species occurrence, can account for species occurring in only a portion of a surveyed site, and can relate detection probabilities to these within-site occurrence proportions. We show how our model can be fit using Bayesian methods and develop a computationally efficient MCMC algorithm. In particular, we rely on a Vecchia approximation to implement the spatial Gaussian process describing species occurrence and develop a surrogate data approach for jointly updating the spatial terms and spatial covariance parameters. We demonstrate our model using simulated data and compare our approach to alternative spatial occupancy models. We also use our model to analyze ovenbird occurrence data collected in New Hampshire, USA.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf055","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Occupancy models are used to infer species distributions over large spatial extents while accounting for imperfect detection. Current approaches, however, are unable to model species occurrence over continuous spatial domains while accounting for the discrete spatial domain of the observed data. We develop a new class of spatial occupancy models that embeds a change of spatial support between the observed data and occurrence process. We use a clipped Gaussian process to represent species occurrence in continuous space, which can provide inferences at a finer resolution than the observed occupancy data. Our approach is beneficial because it allows for more realistic models of species occurrence, can account for species occurring in only a portion of a surveyed site, and can relate detection probabilities to these within-site occurrence proportions. We show how our model can be fit using Bayesian methods and develop a computationally efficient MCMC algorithm. In particular, we rely on a Vecchia approximation to implement the spatial Gaussian process describing species occurrence and develop a surrogate data approach for jointly updating the spatial terms and spatial covariance parameters. We demonstrate our model using simulated data and compare our approach to alternative spatial occupancy models. We also use our model to analyze ovenbird occurrence data collected in New Hampshire, USA.

连续空间占用模型。
占用模型用于推断物种在大空间范围内的分布,同时考虑到不完善的检测。然而,目前的方法在考虑观测数据的离散空间域时,无法在连续空间域上模拟物种的发生。我们开发了一类新的空间占用模型,该模型嵌入了观测数据和发生过程之间的空间支持变化。我们使用剪切高斯过程来表示连续空间中的物种发生,这可以提供比观测到的占用数据更精细的分辨率推断。我们的方法是有益的,因为它允许更现实的物种发生模型,可以解释物种只在调查地点的一部分发生,并且可以将检测概率与这些地点内的发生比例联系起来。我们展示了如何使用贝叶斯方法拟合我们的模型,并开发了一个计算效率高的MCMC算法。特别是,我们依靠Vecchia近似来实现描述物种发生的空间高斯过程,并开发了一种替代数据方法来共同更新空间项和空间协方差参数。我们使用模拟数据演示了我们的模型,并将我们的方法与其他空间占用模型进行了比较。我们还使用我们的模型来分析在美国新罕布什尔州收集的灶鸟发生数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信