Md Mijanur Rahman, Asma Talukder, Md Sifat Rahi, Plabon Kumar Das, I Darren Grice, Glen C Ulett, Ming Q Wei
{"title":"Evaluation of Immunostimulatory Effects of Bacterial Lysate Proteins on THP-1 Macrophages: Pro-inflammatory Cytokine Response and Proteomic Profiling.","authors":"Md Mijanur Rahman, Asma Talukder, Md Sifat Rahi, Plabon Kumar Das, I Darren Grice, Glen C Ulett, Ming Q Wei","doi":"10.1155/jimr/2289241","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial lysate proteins (BLPs) serve as potential immunostimulants, recognized by pattern recognition receptors (PRRs) on immune cells, eliciting a robust immune response. In this study, THP-1 macrophages were treated with varying doses of BLPs derived from <i>Streptococcus pyogenes</i> (SP), <i>Streptococcus agalactiae</i> (SA), and <i>Serratia marcescens</i> (SM). The results showed significant increases (<i>p</i> < 0.05) in pro-inflammatory cytokines such as TNF-<i>α</i>, IL-1<i>β</i>, IL-6, IL-12, granulocyte macrophage-colony stimulating factor (GM-CSF), eotaxin, and macrophage inflammatory protein (MIP)-1<i>α</i>, except for 5 µg of all BLPs for TNF-<i>α</i> and eotaxin, and 5 µg of SP for IL-12 production. No significant differences were found between the corresponding doses of SP and SA or SP and SM, except for GM-CSF in all doses, while SA and SM only showed a difference at the 5 µg dose for GM-CSF. Furthermore, there were no significant differences between the 10 and 20 µg doses of all BLPs, indicating that doses higher than 10 µg do not significantly enhance the pro-inflammatory response. Combination doses of SP + SM and SA + SM did not show significant differences, except for IL-1<i>β</i>, suggesting no synergistic effect. Cytotoxicity was observed to increase with higher BLP concentrations in a dose-dependent manner, with combinations of SP + SM and SA + SM exhibiting greater cytotoxicity than the individual BLPs. Proteomic analysis of BLPs identified immunostimulatory proteins, including heat shock proteins (HSPs; ClpB, DnaK, and GroEL), metabolic enzymes (glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase, and arginine deiminase (ADI)), and surface and secreted proteins (ESAT-6-like protein, CRISPR-associated endonuclease Cas9, OmpA, porin OmpC, and serralysin), which are involved in immune modulation, bacterial clearance, and immune evasion. This study underscores the potential of bacterial proteins as vaccine adjuvants or supplementary therapies; however, further research is essential to find a balance between immune activation and inflammation reduction to develop safer and more effective immunostimulants.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"2289241"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/jimr/2289241","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial lysate proteins (BLPs) serve as potential immunostimulants, recognized by pattern recognition receptors (PRRs) on immune cells, eliciting a robust immune response. In this study, THP-1 macrophages were treated with varying doses of BLPs derived from Streptococcus pyogenes (SP), Streptococcus agalactiae (SA), and Serratia marcescens (SM). The results showed significant increases (p < 0.05) in pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-12, granulocyte macrophage-colony stimulating factor (GM-CSF), eotaxin, and macrophage inflammatory protein (MIP)-1α, except for 5 µg of all BLPs for TNF-α and eotaxin, and 5 µg of SP for IL-12 production. No significant differences were found between the corresponding doses of SP and SA or SP and SM, except for GM-CSF in all doses, while SA and SM only showed a difference at the 5 µg dose for GM-CSF. Furthermore, there were no significant differences between the 10 and 20 µg doses of all BLPs, indicating that doses higher than 10 µg do not significantly enhance the pro-inflammatory response. Combination doses of SP + SM and SA + SM did not show significant differences, except for IL-1β, suggesting no synergistic effect. Cytotoxicity was observed to increase with higher BLP concentrations in a dose-dependent manner, with combinations of SP + SM and SA + SM exhibiting greater cytotoxicity than the individual BLPs. Proteomic analysis of BLPs identified immunostimulatory proteins, including heat shock proteins (HSPs; ClpB, DnaK, and GroEL), metabolic enzymes (glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase, and arginine deiminase (ADI)), and surface and secreted proteins (ESAT-6-like protein, CRISPR-associated endonuclease Cas9, OmpA, porin OmpC, and serralysin), which are involved in immune modulation, bacterial clearance, and immune evasion. This study underscores the potential of bacterial proteins as vaccine adjuvants or supplementary therapies; however, further research is essential to find a balance between immune activation and inflammation reduction to develop safer and more effective immunostimulants.
期刊介绍:
Journal of Immunology Research is a peer-reviewed, Open Access journal that provides a platform for scientists and clinicians working in different areas of immunology and therapy. The journal publishes research articles, review articles, as well as clinical studies related to classical immunology, molecular immunology, clinical immunology, cancer immunology, transplantation immunology, immune pathology, immunodeficiency, autoimmune diseases, immune disorders, and immunotherapy.