Efficient and high-density immobilization of animal cells by a microfiber with both swelling and cell adhesion properties and its application to exosome production.
IF 2 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Efficient and high-density immobilization of animal cells by a microfiber with both swelling and cell adhesion properties and its application to exosome production.","authors":"Naofumi Shiomi, Pengfei Zhang, Shuji Nakatsuka, Kazuo Kumagai, Hideto Matsuyama","doi":"10.1007/s10529-025-03585-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>For high-density cell culture, we studied the development of optimal microfibers (MFs) with a 0.1-10 μm diameter, which due to their large surface area can serve as an immobilization carrier for animal cells. To date, few studies have used MFs as scaffolding for high-density cell culturing.</p><p><strong>Results: </strong>Using six types of nonsoluble synthetic polymers, MF sheets were fabricated by electrospinning. The cellulose acetate, polyketone, and polyvinyl acetate MFs exhibited swelling and water retention capacities. Next, the six types of MF fragments were examined for immobilizing TKD2 mouse vascular endothelial cells. Although most cells were taken into the three MFs characterized by swelling, most leaked from the MFs without adhesion. To solve this, the MF sheets comprising cellulose acetate and polyketones were coated with gelatin. Although the adhesive capacity was enhanced, the swelling capacity decreased and almost all the immobilized mouse cells remained on the sheets' surfaces. Based on these results, we produced a novel MF sheet comprising a gelatin, cellulose acetate, and polyketone mixture (CPG). Since the cells were taken into the MFs by swelling and attached by the gelatin, the CPG fragment immobilized almost all the supplied cells with little loss and reached a high density of 3.2 × 10<sup>9</sup> MF-g<sup>-1</sup>, Furthermore, the immobilized cells continuously produced exosomes with a high productivity of 6-7 × 10<sup>10</sup> particles ml<sup>-1</sup> after either 8 h or 16 h of culturing.</p><p><strong>Conclusion: </strong>CPG-based MFs are expected to have a wide range of future applications, including exosome production from animal cells.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"40"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993475/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03585-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: For high-density cell culture, we studied the development of optimal microfibers (MFs) with a 0.1-10 μm diameter, which due to their large surface area can serve as an immobilization carrier for animal cells. To date, few studies have used MFs as scaffolding for high-density cell culturing.
Results: Using six types of nonsoluble synthetic polymers, MF sheets were fabricated by electrospinning. The cellulose acetate, polyketone, and polyvinyl acetate MFs exhibited swelling and water retention capacities. Next, the six types of MF fragments were examined for immobilizing TKD2 mouse vascular endothelial cells. Although most cells were taken into the three MFs characterized by swelling, most leaked from the MFs without adhesion. To solve this, the MF sheets comprising cellulose acetate and polyketones were coated with gelatin. Although the adhesive capacity was enhanced, the swelling capacity decreased and almost all the immobilized mouse cells remained on the sheets' surfaces. Based on these results, we produced a novel MF sheet comprising a gelatin, cellulose acetate, and polyketone mixture (CPG). Since the cells were taken into the MFs by swelling and attached by the gelatin, the CPG fragment immobilized almost all the supplied cells with little loss and reached a high density of 3.2 × 109 MF-g-1, Furthermore, the immobilized cells continuously produced exosomes with a high productivity of 6-7 × 1010 particles ml-1 after either 8 h or 16 h of culturing.
Conclusion: CPG-based MFs are expected to have a wide range of future applications, including exosome production from animal cells.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.