Multiple bias calibration for valid statistical inference under nonignorable nonresponse.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf044
Seonghun Cho, Jae Kwang Kim, Yumou Qiu
{"title":"Multiple bias calibration for valid statistical inference under nonignorable nonresponse.","authors":"Seonghun Cho, Jae Kwang Kim, Yumou Qiu","doi":"10.1093/biomtc/ujaf044","DOIUrl":null,"url":null,"abstract":"<p><p>Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Valid statistical inference is notoriously challenging when the sample is subject to nonresponse bias. We approach this difficult problem by employing multiple candidate models for the propensity score (PS) function combined with empirical likelihood. By incorporating multiple working PS models into the internal bias calibration constraint in the empirical likelihood, the selection bias can be safely eliminated as long as the working PS models contain the true model and their expectations are equal to the true missing rate. The bias calibration constraint for the multiple PS models is called the multiple bias calibration. The study delves into the asymptotic properties of the proposed method and provides a comparative analysis through limited simulation studies against existing methods. To illustrate practical implementation, we present a real data analysis on body fat percentage using the National Health and Nutrition Examination Survey dataset.

不可忽略非响应下有效统计推断的多偏差校准。
当样本受到无反应偏差的影响时,有效的统计推断是非常具有挑战性的。我们通过使用倾向得分(PS)函数的多个候选模型结合经验似然来解决这个难题。通过将多个工作PS模型纳入经验似然的内部偏差校准约束,只要工作PS模型包含真实模型且其期望等于真实缺失率,就可以安全地消除选择偏差。多PS模型的偏置校准约束称为多偏置校准。研究了所提方法的渐近性质,并通过有限的仿真研究与现有方法进行了比较分析。为了说明实际实施,我们使用国家健康和营养检查调查数据集对体脂百分比进行了真实的数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信