Tiantian Wang, Dean Rao, Chenan Fu, Zhoubin Sun, Yiming Luo, Junli Lu, Jie Jin, Han Li, Feimu Fan, Huifang Liang, Wenjie Huang, Limin Xia
{"title":"MET promotes hepatocellular carcinoma development through the promotion of TRIB3-mediated FOXO1 degradation.","authors":"Tiantian Wang, Dean Rao, Chenan Fu, Zhoubin Sun, Yiming Luo, Junli Lu, Jie Jin, Han Li, Feimu Fan, Huifang Liang, Wenjie Huang, Limin Xia","doi":"10.3350/cmh.2024.1163","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, and abnormal MET expression plays a crucial role in its progression. However, the specific pathogenic mechanisms of MET in HCC have yet to be fully elucidated. This study aimed to uncover the oncogenic mechanisms of MET in HCC and explore potential therapeutic implications.</p><p><strong>Methods: </strong>Transcriptomic data from the HTVi MET/β-catenin HCC model and GSEA results from TCGA LIHC cohorts were analyzed to identify key genes in HCC development. In vitro assays and in vivo models were used to investigate the role of TRIB3 in HCC progression. Immunofluorescence (IF), Co-IP, qRT-PCR, and WB revealed target genes regulated by TRIB3. An AAV8-shTRIB3 construct was developed and we assessed its therapeutic potential.</p><p><strong>Results: </strong>MET promoted HCC development both in vitro and in vivo by upregulating the oncogenic protein TRIB3. Mechanistically, MET transcriptionally activated TRIB3 via the ERK/SP1 axis. TRIB3 then recruited the E3 ubiquitin ligase COP1, which facilitated the ubiquitination and degradation of the tumor suppressor transcription factor FOXO1. TRIB3-mediated FOXO1 ubiquitination up regulated the expression of MET, CTNNB1 and TWIST1. In clinical HCC samples, TRIB3 expression was correlated with MET and FOXO1 levels. Liver-specific knockdown of TRIB3 by AAV8-shTRIB3 significantly inhibited MET-driven HCC development.</p><p><strong>Conclusions: </strong>Our results revealed that TRIB3 and COP1 act as key mediators in MET-driven HCC progression. Targeting the MET-TRIB3-FOXO1 regulatory axis may offer a promising therapeutic strategy to counteract oncogenic signaling and impede HCC advancement.</p>","PeriodicalId":10275,"journal":{"name":"Clinical and Molecular Hepatology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Molecular Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3350/cmh.2024.1163","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aims: Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, and abnormal MET expression plays a crucial role in its progression. However, the specific pathogenic mechanisms of MET in HCC have yet to be fully elucidated. This study aimed to uncover the oncogenic mechanisms of MET in HCC and explore potential therapeutic implications.
Methods: Transcriptomic data from the HTVi MET/β-catenin HCC model and GSEA results from TCGA LIHC cohorts were analyzed to identify key genes in HCC development. In vitro assays and in vivo models were used to investigate the role of TRIB3 in HCC progression. Immunofluorescence (IF), Co-IP, qRT-PCR, and WB revealed target genes regulated by TRIB3. An AAV8-shTRIB3 construct was developed and we assessed its therapeutic potential.
Results: MET promoted HCC development both in vitro and in vivo by upregulating the oncogenic protein TRIB3. Mechanistically, MET transcriptionally activated TRIB3 via the ERK/SP1 axis. TRIB3 then recruited the E3 ubiquitin ligase COP1, which facilitated the ubiquitination and degradation of the tumor suppressor transcription factor FOXO1. TRIB3-mediated FOXO1 ubiquitination up regulated the expression of MET, CTNNB1 and TWIST1. In clinical HCC samples, TRIB3 expression was correlated with MET and FOXO1 levels. Liver-specific knockdown of TRIB3 by AAV8-shTRIB3 significantly inhibited MET-driven HCC development.
Conclusions: Our results revealed that TRIB3 and COP1 act as key mediators in MET-driven HCC progression. Targeting the MET-TRIB3-FOXO1 regulatory axis may offer a promising therapeutic strategy to counteract oncogenic signaling and impede HCC advancement.
期刊介绍:
Clinical and Molecular Hepatology is an internationally recognized, peer-reviewed, open-access journal published quarterly in English. Its mission is to disseminate cutting-edge knowledge, trends, and insights into hepatobiliary diseases, fostering an inclusive academic platform for robust debate and discussion among clinical practitioners, translational researchers, and basic scientists. With a multidisciplinary approach, the journal strives to enhance public health, particularly in the resource-limited Asia-Pacific region, which faces significant challenges such as high prevalence of B viral infection and hepatocellular carcinoma. Furthermore, Clinical and Molecular Hepatology prioritizes epidemiological studies of hepatobiliary diseases across diverse regions including East Asia, North Asia, Southeast Asia, Central Asia, South Asia, Southwest Asia, Pacific, Africa, Central Europe, Eastern Europe, Central America, and South America.
The journal publishes a wide range of content, including original research papers, meta-analyses, letters to the editor, case reports, reviews, guidelines, editorials, and liver images and pathology, encompassing all facets of hepatology.