Mehmet Selcuk Erdogan, Muhammed Bekmezci, Nihal Yigit Ertas, Ramazan Bayat, Fatih Sen
{"title":"Development of G-Ag and C-Ag Nanoparticle-Based Biosensor for Benzoic Acid Detection.","authors":"Mehmet Selcuk Erdogan, Muhammed Bekmezci, Nihal Yigit Ertas, Ramazan Bayat, Fatih Sen","doi":"10.1002/open.202400418","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, an efficient electrochemical sensor for the highly sensitive detection of benzoic acid (BA) is developed using silver nanoparticles (Ag NPs) obtained by two different methods: the green synthesis method (G-Ag) and the chemical synthesis method (C-Ag). Linden flower extract is prepared and used for the biosynthesis of Ag NPs. Sodium borohydride, NaBH<sub>4</sub>, is used as a reducing agent in chemical synthesis. Ag NPs are characterized by the X-ray diffraction (XRD) method, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-visible spectrometry. According to the XRD results, the crystal sizes for G-Ag and C-Ag are calculated to be 24.07 and 5.91 nm, respectively. G-Ag and C-Ag NP-modified glassy carbon electrodes (GCEs) and cyclic voltammetry (CV) and differential pulse voltammetry (DPV) are used as electrochemical methods to determine BA. The limits of detection of G-Ag and C-Ag NP-modified GCEs are calculated as 1.67 mM limit of quantification and 10 mM, respectively. The linear ranges of GCEs modified with nanomaterials are determined as 2.40-8.01 mM for C-Ag and 4.84-14.66 mM for G-Ag. The study is significant in that the NPs obtained by the biological synthesis method showed as good activity as the particles synthesized by the chemical method.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e2400418"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400418","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an efficient electrochemical sensor for the highly sensitive detection of benzoic acid (BA) is developed using silver nanoparticles (Ag NPs) obtained by two different methods: the green synthesis method (G-Ag) and the chemical synthesis method (C-Ag). Linden flower extract is prepared and used for the biosynthesis of Ag NPs. Sodium borohydride, NaBH4, is used as a reducing agent in chemical synthesis. Ag NPs are characterized by the X-ray diffraction (XRD) method, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-visible spectrometry. According to the XRD results, the crystal sizes for G-Ag and C-Ag are calculated to be 24.07 and 5.91 nm, respectively. G-Ag and C-Ag NP-modified glassy carbon electrodes (GCEs) and cyclic voltammetry (CV) and differential pulse voltammetry (DPV) are used as electrochemical methods to determine BA. The limits of detection of G-Ag and C-Ag NP-modified GCEs are calculated as 1.67 mM limit of quantification and 10 mM, respectively. The linear ranges of GCEs modified with nanomaterials are determined as 2.40-8.01 mM for C-Ag and 4.84-14.66 mM for G-Ag. The study is significant in that the NPs obtained by the biological synthesis method showed as good activity as the particles synthesized by the chemical method.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.