Beyond Human Limits: The Promise and Pitfalls of Large Language Models in Radiology Research.

IF 1 4区 医学 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Chloe Reyes, Evie Nguyen, Lauren F Alexander, Rajesh Bhayana, Zoe Deahl, Ashish Khandelwal, Connor Mayes, Maria Zulfiqar, Nelly Tan
{"title":"Beyond Human Limits: The Promise and Pitfalls of Large Language Models in Radiology Research.","authors":"Chloe Reyes, Evie Nguyen, Lauren F Alexander, Rajesh Bhayana, Zoe Deahl, Ashish Khandelwal, Connor Mayes, Maria Zulfiqar, Nelly Tan","doi":"10.1097/RCT.0000000000001709","DOIUrl":null,"url":null,"abstract":"<p><p>This review examines the applications and challenges of large language models (LLMs), like OpenAI's ChatGPT, in radiology research. ChatGPT can assist radiology researchers in generating new ideas, finding and summarizing research papers, designing studies, analyzing data, and facilitating manuscript writing. LLMs are powerful tools with numerous applications in radiology research. However, users should be mindful of potential pitfalls, such as producing incorrect or biased outputs and inconsistent responses, along with ethical and privacy concerns. We discuss approaches to optimize models and address these issues, including prompting techniques like chain-of-thought prompting, retrieval-augmented generation, and fine-tuning. For researchers, prompt engineering can be particularly effective. This review seeks to demonstrate how researchers can utilize ChatGPT for radiology research while offering strategies to mitigate associated risks. We aim to help researchers harness these potent tools to safely boost their productivity.</p>","PeriodicalId":15402,"journal":{"name":"Journal of Computer Assisted Tomography","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RCT.0000000000001709","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This review examines the applications and challenges of large language models (LLMs), like OpenAI's ChatGPT, in radiology research. ChatGPT can assist radiology researchers in generating new ideas, finding and summarizing research papers, designing studies, analyzing data, and facilitating manuscript writing. LLMs are powerful tools with numerous applications in radiology research. However, users should be mindful of potential pitfalls, such as producing incorrect or biased outputs and inconsistent responses, along with ethical and privacy concerns. We discuss approaches to optimize models and address these issues, including prompting techniques like chain-of-thought prompting, retrieval-augmented generation, and fine-tuning. For researchers, prompt engineering can be particularly effective. This review seeks to demonstrate how researchers can utilize ChatGPT for radiology research while offering strategies to mitigate associated risks. We aim to help researchers harness these potent tools to safely boost their productivity.

超越人类极限:放射学研究中大型语言模型的前景与缺陷。
本综述探讨了大型语言模型(llm)在放射学研究中的应用和挑战,如OpenAI的ChatGPT。ChatGPT可以帮助放射学研究人员产生新的想法,寻找和总结研究论文,设计研究,分析数据,并促进手稿写作。法学硕士是强大的工具,在放射学研究中有许多应用。然而,用户应该注意潜在的陷阱,例如产生不正确或有偏见的输出和不一致的响应,以及道德和隐私问题。我们讨论了优化模型和解决这些问题的方法,包括提示技术,如思维链提示、检索增强生成和微调。对于研究人员来说,快速工程可能特别有效。本综述旨在展示研究人员如何利用ChatGPT进行放射学研究,同时提供减轻相关风险的策略。我们的目标是帮助研究人员利用这些强大的工具来安全地提高他们的生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
230
审稿时长
4-8 weeks
期刊介绍: The mission of Journal of Computer Assisted Tomography is to showcase the latest clinical and research developments in CT, MR, and closely related diagnostic techniques. We encourage submission of both original research and review articles that have immediate or promissory clinical applications. Topics of special interest include: 1) functional MR and CT of the brain and body; 2) advanced/innovative MRI techniques (diffusion, perfusion, rapid scanning); and 3) advanced/innovative CT techniques (perfusion, multi-energy, dose-reduction, and processing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信