Yinggao Yue, Li Cao, Changzu Chen, Yaodan Chen, Binhe Chen
{"title":"Snake Optimization Algorithm Augmented by Adaptive <i>t</i>-Distribution Mixed Mutation and Its Application in Energy Storage System Capacity Optimization.","authors":"Yinggao Yue, Li Cao, Changzu Chen, Yaodan Chen, Binhe Chen","doi":"10.3390/biomimetics10040244","DOIUrl":null,"url":null,"abstract":"<p><p>To address the drawbacks of the traditional snake optimization method, such as a random population initialization, slow convergence speed, and low accuracy, an adaptive <i>t</i>-distribution mixed mutation snake optimization strategy is proposed. Initially, Tent-based chaotic mapping and the quasi-reverse learning approach are utilized to enhance the quality of the initial solution and the population initialization process of the original method. During the evolution stage, a novel adaptive <i>t</i>-distribution mixed mutation foraging strategy is introduced to substitute the original foraging stage method. This strategy perturbs and mutates at the optimal solution position to generate new solutions, thereby improving the algorithm's ability to escape local optima. The mating mode in the evolution stage is replaced with an opposite-sex attraction mechanism, providing the algorithm with more opportunities for global exploration and exploitation. The improved snake optimization method accelerates convergence and improves accuracy while balancing the algorithm's local and global exploitation capabilities. The experimental results demonstrate that the improved method outperforms other optimization methods, including the standard snake optimization technique, in terms of solution robustness and accuracy. Additionally, each improvement technique complements and amplifies the effects of the others.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10040244","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To address the drawbacks of the traditional snake optimization method, such as a random population initialization, slow convergence speed, and low accuracy, an adaptive t-distribution mixed mutation snake optimization strategy is proposed. Initially, Tent-based chaotic mapping and the quasi-reverse learning approach are utilized to enhance the quality of the initial solution and the population initialization process of the original method. During the evolution stage, a novel adaptive t-distribution mixed mutation foraging strategy is introduced to substitute the original foraging stage method. This strategy perturbs and mutates at the optimal solution position to generate new solutions, thereby improving the algorithm's ability to escape local optima. The mating mode in the evolution stage is replaced with an opposite-sex attraction mechanism, providing the algorithm with more opportunities for global exploration and exploitation. The improved snake optimization method accelerates convergence and improves accuracy while balancing the algorithm's local and global exploitation capabilities. The experimental results demonstrate that the improved method outperforms other optimization methods, including the standard snake optimization technique, in terms of solution robustness and accuracy. Additionally, each improvement technique complements and amplifies the effects of the others.