{"title":"An Informational-Entropic Approach to Exoplanet Characterization.","authors":"Sara Vannah, Ian D Stiehl, Marcelo Gleiser","doi":"10.3390/e27040385","DOIUrl":null,"url":null,"abstract":"<p><p>In the past, measures of the \"Earth-likeness\" of exoplanets have been qualitative, considering an abiotic Earth, or requiring discretionary choices of what parameters make a planet Earth-like. With the advent of high-resolution exoplanet spectroscopy, there is a growing need for a method of quantifying the Earth-likeness of a planet that addresses these issues while making use of the data available from modern telescope missions. In this work, we introduce an informational-entropic metric that makes use of the spectrum of an exoplanet to directly quantify how Earth-like the planet is. To illustrate our method, we generate simulated transmission spectra of a series of Earth-like and super-Earth exoplanets, as well as an exoJupiter and several gas giant exoplanets. As a proof of concept, we demonstrate the ability of the information metric to evaluate how similar a planet is to Earth, making it a powerful tool in the search for a candidate Earth 2.0.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040385","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the past, measures of the "Earth-likeness" of exoplanets have been qualitative, considering an abiotic Earth, or requiring discretionary choices of what parameters make a planet Earth-like. With the advent of high-resolution exoplanet spectroscopy, there is a growing need for a method of quantifying the Earth-likeness of a planet that addresses these issues while making use of the data available from modern telescope missions. In this work, we introduce an informational-entropic metric that makes use of the spectrum of an exoplanet to directly quantify how Earth-like the planet is. To illustrate our method, we generate simulated transmission spectra of a series of Earth-like and super-Earth exoplanets, as well as an exoJupiter and several gas giant exoplanets. As a proof of concept, we demonstrate the ability of the information metric to evaluate how similar a planet is to Earth, making it a powerful tool in the search for a candidate Earth 2.0.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.