{"title":"Rhizobacteria Revolution: Amplifying Crop Resilience and Yield in a Changing Climate Through Plant Growth Promotion.","authors":"Vani Sharma, Aditya Sheershwal, Shiwali Bisht","doi":"10.1002/jobm.70039","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid progression of climate change poses significant challenges to global agriculture, necessitating innovative solutions to ensure food security for an expanding population. Plant growth-promoting rhizobacteria (PGPR) offer a promising avenue for sustainable agriculture by enhancing crop resilience and productivity under environmental constraints. These beneficial microbes regulate key physiological processes in plants, such as phytohormone synthesis and nutrient solubilization. This enhances root architecture, improves soil fertility, and enables crops to adapt to resource-limited conditions. Moreover, PGPR strengthen plant defenses against abiotic stressors such as salinity, drought, and nutrient deficiencies, as well as biotic threats like pathogens. Empirical evidence demonstrates that PGPR inoculation can significantly enhance crop yields across diverse agroecosystems by increasing nutrient use efficiency and stress tolerance. Despite their proven potential, the effective deployment of PGPR in farming systems requires addressing critical issues related to scalability, formulation, and integration with existing practices. This review underscores the role of PGPR in mitigating climate-induced agricultural challenges, highlighting the need for interdisciplinary collaborations and robust knowledge-sharing networks to drive the adoption of PGPR-based interventions. By leveraging these microbial allies, we can pave the way for climate-resilient farming systems and safeguard global food security amidst an uncertain future.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e039"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.70039","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid progression of climate change poses significant challenges to global agriculture, necessitating innovative solutions to ensure food security for an expanding population. Plant growth-promoting rhizobacteria (PGPR) offer a promising avenue for sustainable agriculture by enhancing crop resilience and productivity under environmental constraints. These beneficial microbes regulate key physiological processes in plants, such as phytohormone synthesis and nutrient solubilization. This enhances root architecture, improves soil fertility, and enables crops to adapt to resource-limited conditions. Moreover, PGPR strengthen plant defenses against abiotic stressors such as salinity, drought, and nutrient deficiencies, as well as biotic threats like pathogens. Empirical evidence demonstrates that PGPR inoculation can significantly enhance crop yields across diverse agroecosystems by increasing nutrient use efficiency and stress tolerance. Despite their proven potential, the effective deployment of PGPR in farming systems requires addressing critical issues related to scalability, formulation, and integration with existing practices. This review underscores the role of PGPR in mitigating climate-induced agricultural challenges, highlighting the need for interdisciplinary collaborations and robust knowledge-sharing networks to drive the adoption of PGPR-based interventions. By leveraging these microbial allies, we can pave the way for climate-resilient farming systems and safeguard global food security amidst an uncertain future.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).