Engineered extracellular vesicle with RAGE-antagonist peptide for delivery of anti-miRNA155 oligonucleotides to inflammatory lung cells.

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Chuanyu Zhuang, Minji Kang, Jihun Oh, Chowon Lee, Minhyung Lee
{"title":"Engineered extracellular vesicle with RAGE-antagonist peptide for delivery of anti-miRNA155 oligonucleotides to inflammatory lung cells.","authors":"Chuanyu Zhuang, Minji Kang, Jihun Oh, Chowon Lee, Minhyung Lee","doi":"10.1080/1061186X.2025.2500040","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) is an inflammatory lung disease. In lungs afflicted with ALI, microRNA-155 (miR-155) is over-expressed, inducing pro-inflammatory cytokines by inhibition of suppressor of cytokine signaling 1 (SOCS1). In addition, receptors for advanced glycation end-products (RAGEs) are activated, facilitating the expression of pro-inflammatory cytokines. Therefore, anti-miRNA-155 oligonucleotides (AMO155) and a RAGE-antagonist peptide (RAP) have been suggested as effective therapeutics of ALI. In this study, extracellular vesicles (EVs) were developed as a carrier of AMO155 and the RAP for a combination therapy of ALI. RAP-engineered EVs (RAP-EVs) were produced by the expression of a recombinant RAP-Lamp2b fusion protein on the surface. Then, cholesterol-modified AMO155 (AMO155c) was loaded onto the RAP-EV. <i>In vitro</i> assays showed that the RAP-EV delivered AMO155c as efficiently as unmodified-EV (Unmod-EV). For <i>in vivo</i> animal experiments, AMO155c-loaded EVs (AMO155c/EVs) were administrated into the ALI models by intratracheal instillation. The results showed that the AMO155c/RAP-EV induced SOCS1 and decreased RAGE expression more efficiently than the control systems. Compared to the controls, the inflammatory responses, such as pro-inflammatory cytokines, were effectively reduced by the AMO155c/RAP-EV. The results indicated that the RAP-EV could be an efficient carrier for the combination therapy of the RAP and AMO155c.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-12"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2500040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute lung injury (ALI) is an inflammatory lung disease. In lungs afflicted with ALI, microRNA-155 (miR-155) is over-expressed, inducing pro-inflammatory cytokines by inhibition of suppressor of cytokine signaling 1 (SOCS1). In addition, receptors for advanced glycation end-products (RAGEs) are activated, facilitating the expression of pro-inflammatory cytokines. Therefore, anti-miRNA-155 oligonucleotides (AMO155) and a RAGE-antagonist peptide (RAP) have been suggested as effective therapeutics of ALI. In this study, extracellular vesicles (EVs) were developed as a carrier of AMO155 and the RAP for a combination therapy of ALI. RAP-engineered EVs (RAP-EVs) were produced by the expression of a recombinant RAP-Lamp2b fusion protein on the surface. Then, cholesterol-modified AMO155 (AMO155c) was loaded onto the RAP-EV. In vitro assays showed that the RAP-EV delivered AMO155c as efficiently as unmodified-EV (Unmod-EV). For in vivo animal experiments, AMO155c-loaded EVs (AMO155c/EVs) were administrated into the ALI models by intratracheal instillation. The results showed that the AMO155c/RAP-EV induced SOCS1 and decreased RAGE expression more efficiently than the control systems. Compared to the controls, the inflammatory responses, such as pro-inflammatory cytokines, were effectively reduced by the AMO155c/RAP-EV. The results indicated that the RAP-EV could be an efficient carrier for the combination therapy of the RAP and AMO155c.

rage -拮抗剂肽工程细胞外囊泡用于向炎性肺细胞递送抗mirna155寡核苷酸。
急性肺损伤(ALI)是一种肺部炎症性疾病。在ALI患者的肺中,microRNA-155 (miR-155)过表达,通过抑制细胞因子信号传导1的抑制因子(SOCS1)诱导促炎细胞因子。此外,晚期糖基化终产物受体(RAGEs)被激活,促进促炎细胞因子的表达。因此,抗mirna -155寡核苷酸(AMO155)和rage -拮抗剂肽(RAP)被认为是治疗ALI的有效药物。本研究将细胞外囊泡(EVs)作为AMO155和RAP的载体,用于ALI的联合治疗。rap工程ev (rap - ev)是通过在表面表达重组RAP-Lamp2b融合蛋白制备的。然后,将胆固醇修饰的AMO155 (AMO155c)装载到RAP-EV上。体外实验表明,RAP-EV与未经修饰的ev (Unmod-EV)一样有效地递送了AMO155c。在体内动物实验中,将满载AMO155c的ev (AMO155c/ ev)经气管内滴注到ALI模型中。结果表明,与对照系统相比,AMO155c/RAP-EV更有效地诱导SOCS1和降低RAGE表达。与对照组相比,AMO155c/RAP-EV有效降低了促炎细胞因子等炎症反应。结果表明,RAP- ev可作为RAP与AMO155c联合治疗的有效载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信