{"title":"On Discretely Structured Growth Models and Their Moments.","authors":"Benjamin J Walker, Helen M Byrne","doi":"10.1007/s11538-025-01446-w","DOIUrl":null,"url":null,"abstract":"<p><p>The logistic equation is ubiquitous in applied mathematics as a minimal model of saturating growth. Here, we examine a broad generalisation of the logistic growth model to discretely structured populations, motivated by examples that range from the ageing of individuals in a species to immune cell exhaustion by cancerous tissue. Through exploration of a range of concrete examples and a general analysis of polynomial kinetics, we derive necessary and sufficient conditions for the dependence of the kinetics on structure to result in closed, low-dimensional moment equations that are exact. Further, we showcase how coarse-grained moment information can be used to elucidate the details of structured dynamics, with immediate potential for model selection and hypothesis testing. This paper belongs to the special collection: Problems, Progress and Perspectives in Mathematical and Computational Biology.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 6","pages":"71"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01446-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The logistic equation is ubiquitous in applied mathematics as a minimal model of saturating growth. Here, we examine a broad generalisation of the logistic growth model to discretely structured populations, motivated by examples that range from the ageing of individuals in a species to immune cell exhaustion by cancerous tissue. Through exploration of a range of concrete examples and a general analysis of polynomial kinetics, we derive necessary and sufficient conditions for the dependence of the kinetics on structure to result in closed, low-dimensional moment equations that are exact. Further, we showcase how coarse-grained moment information can be used to elucidate the details of structured dynamics, with immediate potential for model selection and hypothesis testing. This paper belongs to the special collection: Problems, Progress and Perspectives in Mathematical and Computational Biology.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.