Coupling of SARS-CoV-2 to Amyloid Fibrils and Liquid-Liquid Phase Separation.

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hoang Linh Nguyen, Mai Suan Li
{"title":"Coupling of SARS-CoV-2 to Amyloid Fibrils and Liquid-Liquid Phase Separation.","authors":"Hoang Linh Nguyen, Mai Suan Li","doi":"10.2174/0113892037354482250414045355","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 is a respiratory disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), but because the receptor protein of this virus can appear not only in the lungs and throat but also in various parts of the host's body, it causes different diseases. Recent observations have suggested that SARS-CoV-2 damages the central nervous system of patients in a manner similar to amyloid-associated neurodegenerative diseases such as Alzheimer's and Parkinson's. Neurodegenerative diseases are believed to be associated with the self-assembly of amyloid proteins and peptides. On the other hand, whole proteins or parts of them encoded by SARS-CoV-2 can form amyloid fibrils, which may play an important role in amyloid-related diseases. Motivated by this evidence, this mini-review discusses experimental and computational studies of SARS-CoV-2 proteins that can form amyloid aggregates. Liquid-Liquid Phase Separation (LLPS) is a dynamic and reversible process leading to the creation of membrane-less organelles within the cytoplasm, which is not bound by a membrane that concentrates specific types of biomolecules. These organelles play pivotal roles in cellular signaling, stress response, and the regulation of biomolecular condensates. Recently, LLPS of the Nucleocapsid (N) protein and SARS-CoV-2 RNA has been disclosed, but many questions about the phase separation mechanism and the formation of the virion core are still unclear. We summarize the results of this phenomenon and suggest potentially intriguing issues for future research.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037354482250414045355","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

COVID-19 is a respiratory disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), but because the receptor protein of this virus can appear not only in the lungs and throat but also in various parts of the host's body, it causes different diseases. Recent observations have suggested that SARS-CoV-2 damages the central nervous system of patients in a manner similar to amyloid-associated neurodegenerative diseases such as Alzheimer's and Parkinson's. Neurodegenerative diseases are believed to be associated with the self-assembly of amyloid proteins and peptides. On the other hand, whole proteins or parts of them encoded by SARS-CoV-2 can form amyloid fibrils, which may play an important role in amyloid-related diseases. Motivated by this evidence, this mini-review discusses experimental and computational studies of SARS-CoV-2 proteins that can form amyloid aggregates. Liquid-Liquid Phase Separation (LLPS) is a dynamic and reversible process leading to the creation of membrane-less organelles within the cytoplasm, which is not bound by a membrane that concentrates specific types of biomolecules. These organelles play pivotal roles in cellular signaling, stress response, and the regulation of biomolecular condensates. Recently, LLPS of the Nucleocapsid (N) protein and SARS-CoV-2 RNA has been disclosed, but many questions about the phase separation mechanism and the formation of the virion core are still unclear. We summarize the results of this phenomenon and suggest potentially intriguing issues for future research.

SARS-CoV-2与淀粉样蛋白原纤维的偶联及液-液相分离
COVID-19是一种由严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)引起的呼吸道疾病,但由于这种病毒的受体蛋白不仅可以出现在肺部和喉咙中,还可以出现在宿主身体的各个部位,因此会导致不同的疾病。最近的观察表明,SARS-CoV-2损害患者中枢神经系统的方式类似于淀粉样蛋白相关的神经退行性疾病,如阿尔茨海默病和帕金森病。神经退行性疾病被认为与淀粉样蛋白和多肽的自组装有关。另一方面,SARS-CoV-2编码的整个蛋白质或部分蛋白质可以形成淀粉样蛋白原纤维,这可能在淀粉样蛋白相关疾病中发挥重要作用。在这一证据的推动下,这篇小型综述讨论了可以形成淀粉样蛋白聚集体的SARS-CoV-2蛋白的实验和计算研究。液-液相分离(LLPS)是一种动态可逆的过程,导致细胞质内无膜细胞器的产生,细胞器不受膜的束缚,可以浓缩特定类型的生物分子。这些细胞器在细胞信号传导、应激反应和生物分子凝聚物的调节中起着关键作用。近年来,核衣壳蛋白(N)和SARS-CoV-2 RNA的LLPS已被发现,但其相分离机制和病毒粒子核的形成仍有许多问题尚不清楚。我们总结了这一现象的结果,并提出了未来研究的潜在有趣问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current protein & peptide science
Current protein & peptide science 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信