Quantitative genetics of photosynthetic trait variation in maize.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Waqar Ali, Marcin Grzybowski, J Vladimir Torres-Rodríguez, Fangyi Li, Nikee Shrestha, Ramesh Kanna Mathivanan, Gabriel de Bernardeaux, Khang Hoang, Ravi V Mural, Rebecca L Roston, James C Schnable, Seema Sahay
{"title":"Quantitative genetics of photosynthetic trait variation in maize.","authors":"Waqar Ali, Marcin Grzybowski, J Vladimir Torres-Rodríguez, Fangyi Li, Nikee Shrestha, Ramesh Kanna Mathivanan, Gabriel de Bernardeaux, Khang Hoang, Ravi V Mural, Rebecca L Roston, James C Schnable, Seema Sahay","doi":"10.1093/jxb/eraf198","DOIUrl":null,"url":null,"abstract":"<p><p>Natural genetic variation in photosynthesis-related traits can aid both in identifying genes involved in regulating photosynthetic processes and developing crops with improved productivity and photosynthetic efficiency. However, rapidly fluctuating environmental parameters create challenges for measuring photosynthetic parameters in large populations under field conditions. We measured chlorophyll fluorescence and absorbance-based photosynthetic traits in a maize diversity panel in the field using an experimental design that allowed us to estimate and control multiple confounding factors. Controlling the impact of day of measurement and light intensity as well as patterns of two-dimensional spatial variation in the field increased heritability for 11 out of 14 traits measured. We were able to identify high confidence GWAS signals associated with variation in four spatially corrected traits (the quantum yield of photosystem II, non-photochemical quenching, redox state of QA, and relative chlorophyll content). Insertion alleles for Arabidopsis orthologs of three candidate genes exhibited phenotypes consistent with our GWAS results. Collectively these results illustrate the potential of applying best practices from quantitative genetics research to address outstanding questions in plant physiology and understand natural variation in photosynthesis.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf198","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Natural genetic variation in photosynthesis-related traits can aid both in identifying genes involved in regulating photosynthetic processes and developing crops with improved productivity and photosynthetic efficiency. However, rapidly fluctuating environmental parameters create challenges for measuring photosynthetic parameters in large populations under field conditions. We measured chlorophyll fluorescence and absorbance-based photosynthetic traits in a maize diversity panel in the field using an experimental design that allowed us to estimate and control multiple confounding factors. Controlling the impact of day of measurement and light intensity as well as patterns of two-dimensional spatial variation in the field increased heritability for 11 out of 14 traits measured. We were able to identify high confidence GWAS signals associated with variation in four spatially corrected traits (the quantum yield of photosystem II, non-photochemical quenching, redox state of QA, and relative chlorophyll content). Insertion alleles for Arabidopsis orthologs of three candidate genes exhibited phenotypes consistent with our GWAS results. Collectively these results illustrate the potential of applying best practices from quantitative genetics research to address outstanding questions in plant physiology and understand natural variation in photosynthesis.

玉米光合性状变异的数量遗传学研究。
光合作用相关性状的自然遗传变异有助于识别参与调节光合过程的基因,并有助于培育具有更高生产力和光合效率的作物。然而,快速波动的环境参数为在野外条件下测量大量种群的光合参数带来了挑战。我们利用实验设计测量了田间玉米多样性面板中的叶绿素荧光和基于吸收的光合特性,使我们能够估计和控制多种混杂因素。控制测量日、光照强度以及田间二维空间变异模式的影响,可提高14个性状中11个性状的遗传力。我们能够识别出与四个空间校正性状(光系统II的量子产率、非光化学猝灭、QA的氧化还原状态和相对叶绿素含量)变化相关的高置信度GWAS信号。三个候选基因的拟南芥同源物的插入等位基因表现出与我们的GWAS结果一致的表型。总的来说,这些结果说明了应用定量遗传学研究的最佳实践来解决植物生理学中的突出问题和理解光合作用的自然变化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信