Andrew J. Abraham, Ethan S. Duvall, Christopher E. Doughty, Barbara Riond, Sylvia Ortmann, Melissa Terranova, Elizabeth le Roux, Marcus Clauss
{"title":"Sodium Retention in Large Herbivores: Physiological Insights and Zoogeochemical Consequences","authors":"Andrew J. Abraham, Ethan S. Duvall, Christopher E. Doughty, Barbara Riond, Sylvia Ortmann, Melissa Terranova, Elizabeth le Roux, Marcus Clauss","doi":"10.1002/jez.2924","DOIUrl":null,"url":null,"abstract":"<p>The assimilation, retention, and release of nutrients by animals fundamentally shapes their physiology and contributions to ecological processes (e.g., zoogeochemistry). Yet, information on the transit of nutrients through the bodies of large mammals remains scarce. Here, we examined how sodium (Na), a key element for animal health and ecosystem functioning, travels differently through fecal and urinary systems of cows (<i>Bos taurus</i>) and horses (<i>Equus ferus caballus</i>). We provided a large dose of Na and compared its timing of release in feces and urine to that of nonabsorbable markers. Na excretion by urine occurred approximately twice as fast as excretion by feces, yet both were shorter than indigestible particle markers. These differences correspond to rapid absorption of Na in the upper gastrointestinal tract and transport by blood to the kidneys (urine Na excretion) or resecretion of Na into the lower intestinal tract (fecal Na excretion). Interestingly, for cows, we found a second peak of Na excretion in urine and feces > 96 h after dosage. This result may indicate that surplus Na can be rapidly absorbed and stored in specific body cells (e.g., skin), from which it is later released. Using a propagule dispersal model, we found that the distance of cattle- and horse-driven nutrient dispersal by urine was 31% and 36% less than the fecal pathway and 60% and 41% less than the particle marker pathway, which is commonly used to estimate nutrient dispersal. Future physiological and zoogeochemical studies should resolve different pathways of nutrient retention and release from large mammals.</p>","PeriodicalId":15711,"journal":{"name":"Journal of experimental zoology. Part A, Ecological and integrative physiology","volume":"343 6","pages":"664-676"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.2924","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part A, Ecological and integrative physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2924","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The assimilation, retention, and release of nutrients by animals fundamentally shapes their physiology and contributions to ecological processes (e.g., zoogeochemistry). Yet, information on the transit of nutrients through the bodies of large mammals remains scarce. Here, we examined how sodium (Na), a key element for animal health and ecosystem functioning, travels differently through fecal and urinary systems of cows (Bos taurus) and horses (Equus ferus caballus). We provided a large dose of Na and compared its timing of release in feces and urine to that of nonabsorbable markers. Na excretion by urine occurred approximately twice as fast as excretion by feces, yet both were shorter than indigestible particle markers. These differences correspond to rapid absorption of Na in the upper gastrointestinal tract and transport by blood to the kidneys (urine Na excretion) or resecretion of Na into the lower intestinal tract (fecal Na excretion). Interestingly, for cows, we found a second peak of Na excretion in urine and feces > 96 h after dosage. This result may indicate that surplus Na can be rapidly absorbed and stored in specific body cells (e.g., skin), from which it is later released. Using a propagule dispersal model, we found that the distance of cattle- and horse-driven nutrient dispersal by urine was 31% and 36% less than the fecal pathway and 60% and 41% less than the particle marker pathway, which is commonly used to estimate nutrient dispersal. Future physiological and zoogeochemical studies should resolve different pathways of nutrient retention and release from large mammals.
期刊介绍:
The Journal of Experimental Zoology – A publishes articles at the interface between Development, Physiology, Ecology and Evolution. Contributions that help to reveal how molecular, functional and ecological variation relate to one another are particularly welcome. The Journal publishes original research in the form of rapid communications or regular research articles, as well as perspectives and reviews on topics pertaining to the scope of the Journal. Acceptable articles are limited to studies on animals.