{"title":"Paritaprevir as a pan-antiviral against different flaviviruses.","authors":"R P Yadav, N R Jena","doi":"10.3389/fmolb.2025.1524951","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The flavivirus infections caused by the Zika virus (ZIKV), Dengue virus (DENV), and West Nile virus (WNV) cause mild to serious pathological conditions, such as fever, joint pain, shock, internal bleeding, organ failure, nausea, breathlessness, brain tissue damage, neurodegenerative diseases, and deaths. As currently no efficient vaccine or drug is available to prevent or treat these diseases in humans, it is essential to identify potential drug-like molecules to treat these diseases. For these reasons, several known anti-viral drugs are repurposed against the proteases of ZIKV, WNV, and DENV to inhibit their activities.</p><p><strong>Methods: </strong>The GOLD 5.0 molecular docking program was used to dock 20 HIV and HCV drugs against the ZIKV protease. Based on docking scores, 5 drugs were found to bind to the ZIKV protease with high affinities. Subsequently, the AMBER ff14SB force field was employed to simulate these drug-bound complexes of ZIKV protease. The MM/PBSA free energy method was utilized to compute the binding free energies of these complexes. Consequently, the two best ZIKV protease inhibitors were repurposed against the proteases of DENV and WNV.</p><p><strong>Results and discussion: </strong>It is found that out of the 5 drugs, Ritonavir and Paritaprevir bind to the NS2B-NS3 protease of the ZIKV strongly with the Gibbs binding free energies (∆G<sub>bind</sub>) of -17.44±3.18 kcal/mol and -14.25±3.11 kcal/mol respectively. Remarkably, Ritonavir binds to the ZIKV Protease about 12 kcal/mol more strongly compared to its binding to the HIV protease. It is further found that Paritaprevir binds to DENV and WNV proteases as strongly as it binds to the ZIKV protease. Hence it is proposed that Paritaprevir may act as a potent pan-antiviral against the Zika, West Nile, and Dengue viral diseases.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1524951"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1524951","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The flavivirus infections caused by the Zika virus (ZIKV), Dengue virus (DENV), and West Nile virus (WNV) cause mild to serious pathological conditions, such as fever, joint pain, shock, internal bleeding, organ failure, nausea, breathlessness, brain tissue damage, neurodegenerative diseases, and deaths. As currently no efficient vaccine or drug is available to prevent or treat these diseases in humans, it is essential to identify potential drug-like molecules to treat these diseases. For these reasons, several known anti-viral drugs are repurposed against the proteases of ZIKV, WNV, and DENV to inhibit their activities.
Methods: The GOLD 5.0 molecular docking program was used to dock 20 HIV and HCV drugs against the ZIKV protease. Based on docking scores, 5 drugs were found to bind to the ZIKV protease with high affinities. Subsequently, the AMBER ff14SB force field was employed to simulate these drug-bound complexes of ZIKV protease. The MM/PBSA free energy method was utilized to compute the binding free energies of these complexes. Consequently, the two best ZIKV protease inhibitors were repurposed against the proteases of DENV and WNV.
Results and discussion: It is found that out of the 5 drugs, Ritonavir and Paritaprevir bind to the NS2B-NS3 protease of the ZIKV strongly with the Gibbs binding free energies (∆Gbind) of -17.44±3.18 kcal/mol and -14.25±3.11 kcal/mol respectively. Remarkably, Ritonavir binds to the ZIKV Protease about 12 kcal/mol more strongly compared to its binding to the HIV protease. It is further found that Paritaprevir binds to DENV and WNV proteases as strongly as it binds to the ZIKV protease. Hence it is proposed that Paritaprevir may act as a potent pan-antiviral against the Zika, West Nile, and Dengue viral diseases.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.