Jiabei Lian, Yachun An, Wenjing Wei, Yao Lu, Xiyu Zhang, Gongping Sun, Haiyang Guo, Longjin Xu, Xuena Chen, Huili Hu
{"title":"Transcriptional landscape and chromatin accessibility reveal key regulators for liver regenerative initiation and organoid formation.","authors":"Jiabei Lian, Yachun An, Wenjing Wei, Yao Lu, Xiyu Zhang, Gongping Sun, Haiyang Guo, Longjin Xu, Xuena Chen, Huili Hu","doi":"10.1016/j.celrep.2025.115633","DOIUrl":null,"url":null,"abstract":"<p><p>Liver regeneration is a well-organized and phase-restricted process that involves chromatin remodeling and transcriptional alterations. However, the specific transcription factors (TFs) that act as key \"switches\" to initiate hepatocyte regeneration and organoid formation remain unclear. Comprehensive integration of RNA sequencing and ATAC sequencing reveals that ATF3 representing \"Initiation_on\" TF and ONECUT2 representing \"Initiation_off\" TF transiently modulate the occupancy of target promoters to license liver cells for regeneration. Knockdown of Atf3 or overexpression of Onecut2 not only reduces organoid formation but also delays tissue-damage repair after PHx or CCl<sub>4</sub> treatment. Mechanistically, we demonstrate that ATF3 binds to the promoter of Slc7a5 to activate mTOR signals while the Hmgcs1 promoter loses ONECUT2 binding to facilitate regenerative initiation. The results identify the mechanism for initiating regeneration and reveal the remodeling of transcriptional landscapes and chromatin accessibility, thereby providing potential therapeutic targets for liver diseases with regenerative defects.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115633"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115633","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liver regeneration is a well-organized and phase-restricted process that involves chromatin remodeling and transcriptional alterations. However, the specific transcription factors (TFs) that act as key "switches" to initiate hepatocyte regeneration and organoid formation remain unclear. Comprehensive integration of RNA sequencing and ATAC sequencing reveals that ATF3 representing "Initiation_on" TF and ONECUT2 representing "Initiation_off" TF transiently modulate the occupancy of target promoters to license liver cells for regeneration. Knockdown of Atf3 or overexpression of Onecut2 not only reduces organoid formation but also delays tissue-damage repair after PHx or CCl4 treatment. Mechanistically, we demonstrate that ATF3 binds to the promoter of Slc7a5 to activate mTOR signals while the Hmgcs1 promoter loses ONECUT2 binding to facilitate regenerative initiation. The results identify the mechanism for initiating regeneration and reveal the remodeling of transcriptional landscapes and chromatin accessibility, thereby providing potential therapeutic targets for liver diseases with regenerative defects.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.