{"title":"Sugar phosphatases as biocatalysts for biomanufacturing: Recent advances and applications","authors":"Juanjuan Liu, Guangpeng Xu, Likun Liang, Dongdong Meng","doi":"10.1016/j.biotechadv.2025.108596","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphatases, the largest subgroup within the haloacid dehydrogenase (HAD) superfamily, catalyze the irreversible dephosphorylation of phosphate biomolecules. In in vitro synthetic enzymatic biosystems, sugar phosphatases drive the pathways of phosphorylation, transformation (isomerization, epimerization, dehydrogenation, and/or transamination), and dephosphorylation towards product formation through irreversible and exothermic reactions. This process enables enzymatic cascades based on phosphorylation-dephosphorylation to overcome the thermodynamic limitations of traditional functional sugar production methods that rely on isomerases or epimerases, potentially leading to high theoretical conversion rates. However, sugar phosphatases often exhibit broad substrate scope, which can result in dephosphorylation of intermediates within enzymatic biosystems. In this review, we begin by reviewing the classification, structural features, and catalytic mechanisms of phosphatases, followed by the molecular mechanisms underlying substrate promiscuity. The current research on the substrate specificity engineering of phosphatases is then discussed, with particular focus on the production of functional sugars using sugar phosphatase-driven in vitro synthetic enzymatic biosystems. Our goal is to provide a comprehensive overview of the current research status, challenges, and future trends related to sugar phosphatases-mediated biomanufacturing, offers valuable insights into the enzymatic modification and application of these enzymes.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"82 ","pages":"Article 108596"},"PeriodicalIF":12.1000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975025000825","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphatases, the largest subgroup within the haloacid dehydrogenase (HAD) superfamily, catalyze the irreversible dephosphorylation of phosphate biomolecules. In in vitro synthetic enzymatic biosystems, sugar phosphatases drive the pathways of phosphorylation, transformation (isomerization, epimerization, dehydrogenation, and/or transamination), and dephosphorylation towards product formation through irreversible and exothermic reactions. This process enables enzymatic cascades based on phosphorylation-dephosphorylation to overcome the thermodynamic limitations of traditional functional sugar production methods that rely on isomerases or epimerases, potentially leading to high theoretical conversion rates. However, sugar phosphatases often exhibit broad substrate scope, which can result in dephosphorylation of intermediates within enzymatic biosystems. In this review, we begin by reviewing the classification, structural features, and catalytic mechanisms of phosphatases, followed by the molecular mechanisms underlying substrate promiscuity. The current research on the substrate specificity engineering of phosphatases is then discussed, with particular focus on the production of functional sugars using sugar phosphatase-driven in vitro synthetic enzymatic biosystems. Our goal is to provide a comprehensive overview of the current research status, challenges, and future trends related to sugar phosphatases-mediated biomanufacturing, offers valuable insights into the enzymatic modification and application of these enzymes.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.