Qing Zhang, Song He, Zhonghao Ji, Xiwen Zhang, Bao Yuan, Ruirui Liu, Yimin Yang, Yu Ding
{"title":"Integrated bioinformatic analysis identifies GADD45B as an immune-related prognostic biomarker in skin cutaneous melanoma.","authors":"Qing Zhang, Song He, Zhonghao Ji, Xiwen Zhang, Bao Yuan, Ruirui Liu, Yimin Yang, Yu Ding","doi":"10.1186/s41065-025-00437-0","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cutaneous melanoma (SKCM) arises from melanocytes and is an aggressive form of skin cancer. If left untreated, most melanomas will metastasize, posing a major health risk. GADD45B, a member of the GADD45 family, is known to be involved in DNA damage repair; however, its specific role in SKCM remains largely unclear. In this study, we comprehensively investigated the function of GADD45B in SKCM. By integrating 26 SKCM-related datasets from The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), cBioPortal for Cancer Genomics (cBioPortal), Gene Expression Omnibus (GEO), and other databases, we conducted functional enrichment, immune infiltration, and single-cell analyses using R. Additionally, transcriptome sequencing of 30 human SKCM cell lines, phenotype characterization of 29 SKCM lines in vitro, and macrophage polarization analysis were performed. We found that GADD45B expression was significantly downregulated in SKCM patients compared to normal controls (p < 0.001), and higher GADD45B levels correlated with better prognosis (p < 0.05). GADD45B also showed high diagnostic accuracy, with an area under the curve (AUC) of 0.986. GO and KEGG analyses revealed a strong association between GADD45B and immune-related pathways. Gene Set Variation Analysis (GSVA) and single-cell sequencing suggested that GADD45B may serve as a novel immune checkpoint, predominantly expressed in macrophages and promoting M1 polarization. In vitro, overexpression of GADD45B significantly inhibited SKCM cell proliferation, potentially via suppression of the PI3K/Akt signaling pathway, and also reduced chemotherapy resistance. Furthermore, in vivo experiments using a xenograft mouse model demonstrated that GADD45B overexpression significantly suppressed tumor growth. Mice injected with GADD45B-overexpressing tumor cells exhibited smaller tumor volumes from day 15 onwards compared to controls, with markedly reduced tumor volume and weight at the endpoint. These results underscore the potential of GADD45B as an effective tumor suppressor in SKCM. In conclusion, our findings highlight GADD45B as a key regulator in SKCM progression, capable of restraining tumor cell proliferation and enhancing apoptosis. GADD45B holds promise as a novel diagnostic and prognostic biomarker and a potential target for SKCM immunotherapy.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"74"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00437-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Skin cutaneous melanoma (SKCM) arises from melanocytes and is an aggressive form of skin cancer. If left untreated, most melanomas will metastasize, posing a major health risk. GADD45B, a member of the GADD45 family, is known to be involved in DNA damage repair; however, its specific role in SKCM remains largely unclear. In this study, we comprehensively investigated the function of GADD45B in SKCM. By integrating 26 SKCM-related datasets from The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), cBioPortal for Cancer Genomics (cBioPortal), Gene Expression Omnibus (GEO), and other databases, we conducted functional enrichment, immune infiltration, and single-cell analyses using R. Additionally, transcriptome sequencing of 30 human SKCM cell lines, phenotype characterization of 29 SKCM lines in vitro, and macrophage polarization analysis were performed. We found that GADD45B expression was significantly downregulated in SKCM patients compared to normal controls (p < 0.001), and higher GADD45B levels correlated with better prognosis (p < 0.05). GADD45B also showed high diagnostic accuracy, with an area under the curve (AUC) of 0.986. GO and KEGG analyses revealed a strong association between GADD45B and immune-related pathways. Gene Set Variation Analysis (GSVA) and single-cell sequencing suggested that GADD45B may serve as a novel immune checkpoint, predominantly expressed in macrophages and promoting M1 polarization. In vitro, overexpression of GADD45B significantly inhibited SKCM cell proliferation, potentially via suppression of the PI3K/Akt signaling pathway, and also reduced chemotherapy resistance. Furthermore, in vivo experiments using a xenograft mouse model demonstrated that GADD45B overexpression significantly suppressed tumor growth. Mice injected with GADD45B-overexpressing tumor cells exhibited smaller tumor volumes from day 15 onwards compared to controls, with markedly reduced tumor volume and weight at the endpoint. These results underscore the potential of GADD45B as an effective tumor suppressor in SKCM. In conclusion, our findings highlight GADD45B as a key regulator in SKCM progression, capable of restraining tumor cell proliferation and enhancing apoptosis. GADD45B holds promise as a novel diagnostic and prognostic biomarker and a potential target for SKCM immunotherapy.
皮肤黑色素瘤(SKCM)起源于黑色素细胞,是一种侵袭性皮肤癌。如果不及时治疗,大多数黑色素瘤会转移,造成重大的健康风险。GADD45B是GADD45家族的一员,已知参与DNA损伤修复;然而,它在SKCM中的具体作用在很大程度上仍然不清楚。在本研究中,我们全面研究了GADD45B在SKCM中的功能。通过整合来自The Cancer Genome Atlas (TCGA)、Cancer Cell Line Encyclopedia (CCLE)、cBioPortal for Cancer Genomics (cBioPortal)、Gene Expression Omnibus (GEO)等数据库的26个SKCM相关数据集,我们使用r进行了功能富集、免疫浸润和单细胞分析。此外,我们还进行了30个人类SKCM细胞系的转录组测序、29个SKCM细胞系的体外表型表征和巨噬细胞极化分析。我们发现,与正常对照相比,SKCM患者中GADD45B的表达显著下调(p
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.