Stephanie Efthymiou, Cailyn P Leo, Chenghong Deng, Sheng-Jia Lin, Reza Maroofian, Renee Lin, Irem Karagoz, Kejia Zhang, Rauan Kaiyrzhanov, Annarita Scardamaglia, Daniel Owrang, Valentina Turchetti, Friederike Jahnke, Kevin Huang, Cassidy Petree, Anna V Derrick, Mark I Rees, Javeria Raza Alvi, Tipu Sultan, Chumei Li, Marie-Line Jacquemont, Frederic Tran-Mau-Them, Maria Valenzuela-Palafoll, Rich Sidlow, Grace Yoon, Michelle M Morrow, Deanna Alexis Carere, Mary O'Connor, Julie Fleischer, Erica H Gerkes, Chanika Phornphutkul, Bertrand Isidor, Clotilde Rivier-Ringenbach, Christophe Philippe, Semra Hiz Kurul, Didem Soydemir, Bulent Kara, Deniz Sunnetci-Akkoyunlu, Viktoria Bothe, Konrad Platzer, Dagmar Wieczorek, Margarete Koch-Hogrebe, Nils Rahner, Ann-Charlotte Thuresson, Hans Matsson, Carina Frykholm, Sevcan Tuğ Bozdoğan, Atil Bisgin, Nicolas Chatron, Gaetan Lesca, Sara Cabet, Zeynep Tümer, Tina D Hjortshøj, Gitte Rønde, Thorsten Marquardt, Janine Reunert, Erum Afzal, Mina Zamani, Reza Azizimalamiri, Hamid Galehdari, Pardis Nourbakhsh, Niloofar Chamanrou, Seo-Kyung Chung, Mohnish Suri, Paul J Benke, Maha S Zaki, Joseph G Gleeson, Daniel G Calame, Davut Pehlivan, Halil I Yilmaz, Alper Gezdirici, Aboulfazl Rad, Iman Sabri Abumansour, Gabriela Oprea, Muhammed Burak Bereketoğlu, Guillaume Banneau, Sophie Julia, Jawaher Zeighami, Saeed Ashoori, Gholamreza Shariati, Alireza Sedaghat, Alihossein Sabri, Mohammad Hamid, Sahere Parvas, Tajul Arifin Tajudin, Uzma Abdullah, Shahid Mahmood Baig, Wendy K Chung, Olga O Glazunova, Sigaudy Sabine, Huma Arshad Cheema, Giovanni Zifarelli, Peter Bauer, Jai Sidpra, Kshitij Mankad, Barbara Vona, Andrew E Fry, Gaurav K Varshney, Henry Houlden, Dragony Fu
{"title":"Bi-allelic pathogenic variants in TRMT1 disrupt tRNA modification and induce a neurodevelopmental disorder.","authors":"Stephanie Efthymiou, Cailyn P Leo, Chenghong Deng, Sheng-Jia Lin, Reza Maroofian, Renee Lin, Irem Karagoz, Kejia Zhang, Rauan Kaiyrzhanov, Annarita Scardamaglia, Daniel Owrang, Valentina Turchetti, Friederike Jahnke, Kevin Huang, Cassidy Petree, Anna V Derrick, Mark I Rees, Javeria Raza Alvi, Tipu Sultan, Chumei Li, Marie-Line Jacquemont, Frederic Tran-Mau-Them, Maria Valenzuela-Palafoll, Rich Sidlow, Grace Yoon, Michelle M Morrow, Deanna Alexis Carere, Mary O'Connor, Julie Fleischer, Erica H Gerkes, Chanika Phornphutkul, Bertrand Isidor, Clotilde Rivier-Ringenbach, Christophe Philippe, Semra Hiz Kurul, Didem Soydemir, Bulent Kara, Deniz Sunnetci-Akkoyunlu, Viktoria Bothe, Konrad Platzer, Dagmar Wieczorek, Margarete Koch-Hogrebe, Nils Rahner, Ann-Charlotte Thuresson, Hans Matsson, Carina Frykholm, Sevcan Tuğ Bozdoğan, Atil Bisgin, Nicolas Chatron, Gaetan Lesca, Sara Cabet, Zeynep Tümer, Tina D Hjortshøj, Gitte Rønde, Thorsten Marquardt, Janine Reunert, Erum Afzal, Mina Zamani, Reza Azizimalamiri, Hamid Galehdari, Pardis Nourbakhsh, Niloofar Chamanrou, Seo-Kyung Chung, Mohnish Suri, Paul J Benke, Maha S Zaki, Joseph G Gleeson, Daniel G Calame, Davut Pehlivan, Halil I Yilmaz, Alper Gezdirici, Aboulfazl Rad, Iman Sabri Abumansour, Gabriela Oprea, Muhammed Burak Bereketoğlu, Guillaume Banneau, Sophie Julia, Jawaher Zeighami, Saeed Ashoori, Gholamreza Shariati, Alireza Sedaghat, Alihossein Sabri, Mohammad Hamid, Sahere Parvas, Tajul Arifin Tajudin, Uzma Abdullah, Shahid Mahmood Baig, Wendy K Chung, Olga O Glazunova, Sigaudy Sabine, Huma Arshad Cheema, Giovanni Zifarelli, Peter Bauer, Jai Sidpra, Kshitij Mankad, Barbara Vona, Andrew E Fry, Gaurav K Varshney, Henry Houlden, Dragony Fu","doi":"10.1016/j.ajhg.2025.03.015","DOIUrl":null,"url":null,"abstract":"<p><p>The post-transcriptional modification of tRNAs plays a crucial role in tRNA structure and function. Pathogenic variants in tRNA-modification enzymes have been implicated in a wide range of human neurodevelopmental and neurological disorders. However, the molecular basis for many of these disorders remains unknown. Here, we describe a comprehensive cohort of 43 individuals from 31 unrelated families with bi-allelic variants in tRNA methyltransferase 1 (TRMT1). These individuals present with a neurodevelopmental disorder universally characterized by developmental delay and intellectual disability, accompanied by variable behavioral abnormalities, epilepsy, and facial dysmorphism. The identified variants include ultra-rare TRMT1 variants, comprising missense and predicted loss-of-function variants, which segregate with the observed clinical pathology. Our findings reveal that several variants lead to mis-splicing and a consequent loss of TRMT1 protein accumulation. Moreover, cells derived from individuals harboring TRMT1 variants exhibit a deficiency in tRNA modifications catalyzed by TRMT1. Molecular analysis reveals distinct regions of TRMT1 required for tRNA-modification activity and binding. Notably, depletion of Trmt1 protein in zebrafish is sufficient to induce developmental and behavioral phenotypes along with gene-expression changes associated with disrupted cell cycle, immune response, and neurodegenerative disorders. Altogether, these findings demonstrate that loss of TRMT1-catalyzed tRNA modifications leads to intellectual disability and provides insight into the molecular underpinnings of tRNA-modification deficiency caused by pathogenic TRMT1 variants.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"112 5","pages":"1117-1138"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.03.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The post-transcriptional modification of tRNAs plays a crucial role in tRNA structure and function. Pathogenic variants in tRNA-modification enzymes have been implicated in a wide range of human neurodevelopmental and neurological disorders. However, the molecular basis for many of these disorders remains unknown. Here, we describe a comprehensive cohort of 43 individuals from 31 unrelated families with bi-allelic variants in tRNA methyltransferase 1 (TRMT1). These individuals present with a neurodevelopmental disorder universally characterized by developmental delay and intellectual disability, accompanied by variable behavioral abnormalities, epilepsy, and facial dysmorphism. The identified variants include ultra-rare TRMT1 variants, comprising missense and predicted loss-of-function variants, which segregate with the observed clinical pathology. Our findings reveal that several variants lead to mis-splicing and a consequent loss of TRMT1 protein accumulation. Moreover, cells derived from individuals harboring TRMT1 variants exhibit a deficiency in tRNA modifications catalyzed by TRMT1. Molecular analysis reveals distinct regions of TRMT1 required for tRNA-modification activity and binding. Notably, depletion of Trmt1 protein in zebrafish is sufficient to induce developmental and behavioral phenotypes along with gene-expression changes associated with disrupted cell cycle, immune response, and neurodegenerative disorders. Altogether, these findings demonstrate that loss of TRMT1-catalyzed tRNA modifications leads to intellectual disability and provides insight into the molecular underpinnings of tRNA-modification deficiency caused by pathogenic TRMT1 variants.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.