The study of the azithromycin effect on gene expression of the toll-like receptor system in the brain nucleus accumbens of rats during ethanol withdrawal and search for possible molecular targets by an in silico method.
M I Airapetov, S O Eresko, A A Shchukina, N M Matveev, M A Andreev, E R Bychkov, A A Lebedev, P D Shabanov
{"title":"The study of the azithromycin effect on gene expression of the toll-like receptor system in the brain nucleus accumbens of rats during ethanol withdrawal and search for possible molecular targets by an in silico method.","authors":"M I Airapetov, S O Eresko, A A Shchukina, N M Matveev, M A Andreev, E R Bychkov, A A Lebedev, P D Shabanov","doi":"10.18097/PBMCR1523","DOIUrl":null,"url":null,"abstract":"<p><p>The brain's nucleus accumbens (NAc) is a key link in the internal reinforcement system, which mediates manifestations of various components of addiction, including ethanol. The neuroinflammatory theory of alcoholism development suggests that changes in the molecular mechanisms of the innate immune system may be involved in the development of this pathology. The aim of our study was to investigate the effect of azithromycin (AZM) on expression of toll-like receptor system genes in the NAc during experimental alcoholization of rats. The objectives of the study also included an in silico search for possible molecular targets for AZM that could be associated with the toll-like receptor system. AZM corrected the changes observed in the expression of toll-like receptor system genes under conditions of alcohol withdrawal after long-term ethanol exposure in the NAc of the brain. The in silico analysis revealed the most probable proteins which could be involved in the interaction with AZM. Based on results of these predictions a number of assumptions about possible ways of implementing the observed pharmacological effect of AZM in the experiment have been made.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"71 2","pages":"95-102"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMCR1523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The brain's nucleus accumbens (NAc) is a key link in the internal reinforcement system, which mediates manifestations of various components of addiction, including ethanol. The neuroinflammatory theory of alcoholism development suggests that changes in the molecular mechanisms of the innate immune system may be involved in the development of this pathology. The aim of our study was to investigate the effect of azithromycin (AZM) on expression of toll-like receptor system genes in the NAc during experimental alcoholization of rats. The objectives of the study also included an in silico search for possible molecular targets for AZM that could be associated with the toll-like receptor system. AZM corrected the changes observed in the expression of toll-like receptor system genes under conditions of alcohol withdrawal after long-term ethanol exposure in the NAc of the brain. The in silico analysis revealed the most probable proteins which could be involved in the interaction with AZM. Based on results of these predictions a number of assumptions about possible ways of implementing the observed pharmacological effect of AZM in the experiment have been made.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).