Sha-Sha Zang, Ruirui Zhang, Jia-Run Zhang, Xi Zhang, Jun Li
{"title":"Progress, Applications and Prospects of CRISPR-Based Genome Editing Technology in Gene Therapy for Cancer and Sickle Cell Disease.","authors":"Sha-Sha Zang, Ruirui Zhang, Jia-Run Zhang, Xi Zhang, Jun Li","doi":"10.1089/hum.2024.262","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of genome-editing technologies, particularly the RNA-guided the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) 9, which originates from prokaryotic CRISPR/Cas adaptive immune mechanisms, has revolutionized molecular biology. Renowned for its simplicity, cost-effectiveness, and capacity for multiplexed gene editing, CRISPR/Cas9 has emerged as the most versatile and widely adopted genome-editing platform. Its applications span fundamental research, biotechnology, medicine, and therapeutics. This review highlights recent advancements in CRISPR-based technologies, focusing on CRISPR/Cas9, CRISPR/Cas12a, and CRISPR/Cas12f. It emphasizes precision editing methods like base editing and prime editing, which enable targeted nucleotide changes without double-strand breaks. The specificity of these tools, including on-target accuracy and off-target risks, is critically evaluated. Additionally, recent preclinical and clinical efforts to treat diseases such as cancer and sickle cell disease using CRISPR are summarized. Finally, the challenges and future directions of CRISPR-mediated gene therapy are discussed, emphasizing its potential to integrate with other molecular approaches to address unmet medical needs.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"858-869"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.262","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of genome-editing technologies, particularly the RNA-guided the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) 9, which originates from prokaryotic CRISPR/Cas adaptive immune mechanisms, has revolutionized molecular biology. Renowned for its simplicity, cost-effectiveness, and capacity for multiplexed gene editing, CRISPR/Cas9 has emerged as the most versatile and widely adopted genome-editing platform. Its applications span fundamental research, biotechnology, medicine, and therapeutics. This review highlights recent advancements in CRISPR-based technologies, focusing on CRISPR/Cas9, CRISPR/Cas12a, and CRISPR/Cas12f. It emphasizes precision editing methods like base editing and prime editing, which enable targeted nucleotide changes without double-strand breaks. The specificity of these tools, including on-target accuracy and off-target risks, is critically evaluated. Additionally, recent preclinical and clinical efforts to treat diseases such as cancer and sickle cell disease using CRISPR are summarized. Finally, the challenges and future directions of CRISPR-mediated gene therapy are discussed, emphasizing its potential to integrate with other molecular approaches to address unmet medical needs.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.