Progress, Applications and Prospects of CRISPR-Based Genome Editing Technology in Gene Therapy for Cancer and Sickle Cell Disease.

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Human gene therapy Pub Date : 2025-06-01 Epub Date: 2025-05-12 DOI:10.1089/hum.2024.262
Sha-Sha Zang, Ruirui Zhang, Jia-Run Zhang, Xi Zhang, Jun Li
{"title":"Progress, Applications and Prospects of CRISPR-Based Genome Editing Technology in Gene Therapy for Cancer and Sickle Cell Disease.","authors":"Sha-Sha Zang, Ruirui Zhang, Jia-Run Zhang, Xi Zhang, Jun Li","doi":"10.1089/hum.2024.262","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of genome-editing technologies, particularly the RNA-guided the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) 9, which originates from prokaryotic CRISPR/Cas adaptive immune mechanisms, has revolutionized molecular biology. Renowned for its simplicity, cost-effectiveness, and capacity for multiplexed gene editing, CRISPR/Cas9 has emerged as the most versatile and widely adopted genome-editing platform. Its applications span fundamental research, biotechnology, medicine, and therapeutics. This review highlights recent advancements in CRISPR-based technologies, focusing on CRISPR/Cas9, CRISPR/Cas12a, and CRISPR/Cas12f. It emphasizes precision editing methods like base editing and prime editing, which enable targeted nucleotide changes without double-strand breaks. The specificity of these tools, including on-target accuracy and off-target risks, is critically evaluated. Additionally, recent preclinical and clinical efforts to treat diseases such as cancer and sickle cell disease using CRISPR are summarized. Finally, the challenges and future directions of CRISPR-mediated gene therapy are discussed, emphasizing its potential to integrate with other molecular approaches to address unmet medical needs.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"858-869"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.262","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of genome-editing technologies, particularly the RNA-guided the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) 9, which originates from prokaryotic CRISPR/Cas adaptive immune mechanisms, has revolutionized molecular biology. Renowned for its simplicity, cost-effectiveness, and capacity for multiplexed gene editing, CRISPR/Cas9 has emerged as the most versatile and widely adopted genome-editing platform. Its applications span fundamental research, biotechnology, medicine, and therapeutics. This review highlights recent advancements in CRISPR-based technologies, focusing on CRISPR/Cas9, CRISPR/Cas12a, and CRISPR/Cas12f. It emphasizes precision editing methods like base editing and prime editing, which enable targeted nucleotide changes without double-strand breaks. The specificity of these tools, including on-target accuracy and off-target risks, is critically evaluated. Additionally, recent preclinical and clinical efforts to treat diseases such as cancer and sickle cell disease using CRISPR are summarized. Finally, the challenges and future directions of CRISPR-mediated gene therapy are discussed, emphasizing its potential to integrate with other molecular approaches to address unmet medical needs.

基于crispr的基因组编辑技术在癌症和镰状细胞病基因治疗中的进展、应用与展望
基因组编辑技术的出现,特别是rna引导的簇状规则间隔短回文重复序列(CRISPR)/CRISPR相关系统(Cas) 9,源于原核CRISPR/Cas适应性免疫机制,已经彻底改变了分子生物学。CRISPR/Cas9以其简单,成本效益和多重基因编辑能力而闻名,已成为最通用和广泛采用的基因组编辑平台。它的应用范围包括基础研究、生物技术、医学和治疗学。本文综述了基于CRISPR技术的最新进展,重点介绍了CRISPR/Cas9、CRISPR/Cas12a和CRISPR/Cas12f。它强调精确的编辑方法,如碱基编辑和引物编辑,使目标核苷酸的变化没有双链断裂。这些工具的特异性,包括靶标准确性和脱靶风险,都经过严格评估。此外,总结了最近使用CRISPR治疗癌症和镰状细胞病等疾病的临床前和临床工作。最后,讨论了crispr介导的基因治疗的挑战和未来方向,强调了其与其他分子方法整合以解决未满足的医疗需求的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信