Lupeng Sun, Xin Cai, Dianjun Chen, Yang Cai, Fenghua Zhang
{"title":"Physiological and biochemical responses of cotton (<i>Gossypium hirsutum</i>) seedlings to NaCl stress and analysis of salt tolerance thresholds.","authors":"Lupeng Sun, Xin Cai, Dianjun Chen, Yang Cai, Fenghua Zhang","doi":"10.1071/FP24204","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinisation is increasing in extent and area, which seriously limits the growth of crops. In this experiment, we investigated the differences in physiological responses and salt (NaCl) tolerance thresholds between salt-tolerant ('Xinluzao 53') and salt-sensitive ('Xinluzao 60') varieties of cotton (Gossypium hirsutum ). Peroxidase activity of 'Xinluzao 53' and 'Xinluzao 60' increased by 29.37% and 59.35%, compared with the control, respectively. Catalase activity of 'Xinluzao 53' and 'Xinluzao 60' was 101.00% and 61.59% higher than that of the control, respectively. Overall increase of malondialdehyde (MDA) content in the leaves of 'Xinluzao 53' was less than 'Xinluzao 60', which was lower in 'Xinluzao 53' than 'Xinluzao 60' under the salt treatments of 8g kg-1 (32.59% lower) and 10g kg-1 (35.27% lower). Net photosynthetic rate (Pn) of 'Xinluzao 60' was reduced by 13.31%, 22.83%, and 21.52% compared to 'Xinluzao 53' at salt concentrations of 2, 8, and 10g kg-1 , respectively. 'Xinluzao 53' protected the cell membrane structure by maintaining higher antioxidant enzyme activities, lower MDA content, and electrolyte leakage under salt stress. Higher SPAD values, chlorophyll fluorescence parameters and photosynthetic rates were further maintained to safeguard normal physiological metabolism and photosynthetic system, higher salt tolerance than 'Xinluzao 60'. The orrelation analysis and quadratic regression equation established an integrated, comprehensive, and reliable screening method for cotton seedling salt tolerance threshold in combination with the actual growth of seedlings. The salt tolerance threshold of salt-tolerant 'Xinluzao 53' seedlings was 10.1g kg-1 , and the salt tolerance threshold of sensitive 'Xinluzao 60' seedlings was 8.5g kg-1 .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24204","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil salinisation is increasing in extent and area, which seriously limits the growth of crops. In this experiment, we investigated the differences in physiological responses and salt (NaCl) tolerance thresholds between salt-tolerant ('Xinluzao 53') and salt-sensitive ('Xinluzao 60') varieties of cotton (Gossypium hirsutum ). Peroxidase activity of 'Xinluzao 53' and 'Xinluzao 60' increased by 29.37% and 59.35%, compared with the control, respectively. Catalase activity of 'Xinluzao 53' and 'Xinluzao 60' was 101.00% and 61.59% higher than that of the control, respectively. Overall increase of malondialdehyde (MDA) content in the leaves of 'Xinluzao 53' was less than 'Xinluzao 60', which was lower in 'Xinluzao 53' than 'Xinluzao 60' under the salt treatments of 8g kg-1 (32.59% lower) and 10g kg-1 (35.27% lower). Net photosynthetic rate (Pn) of 'Xinluzao 60' was reduced by 13.31%, 22.83%, and 21.52% compared to 'Xinluzao 53' at salt concentrations of 2, 8, and 10g kg-1 , respectively. 'Xinluzao 53' protected the cell membrane structure by maintaining higher antioxidant enzyme activities, lower MDA content, and electrolyte leakage under salt stress. Higher SPAD values, chlorophyll fluorescence parameters and photosynthetic rates were further maintained to safeguard normal physiological metabolism and photosynthetic system, higher salt tolerance than 'Xinluzao 60'. The orrelation analysis and quadratic regression equation established an integrated, comprehensive, and reliable screening method for cotton seedling salt tolerance threshold in combination with the actual growth of seedlings. The salt tolerance threshold of salt-tolerant 'Xinluzao 53' seedlings was 10.1g kg-1 , and the salt tolerance threshold of sensitive 'Xinluzao 60' seedlings was 8.5g kg-1 .
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.