Thulasi Bikku, K P N V Satya Sree, Srinivasarao Thota, Malligunta Kiran Kumar, P Shanmugasundaram
{"title":"MSRP-TODNet: a multi-scale reinforced region wise analyser for tiny object detection.","authors":"Thulasi Bikku, K P N V Satya Sree, Srinivasarao Thota, Malligunta Kiran Kumar, P Shanmugasundaram","doi":"10.1186/s13104-025-07263-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Detecting small, faraway objects in real-time surveillance is challenging due to limited pixel representation, affecting classifier performance. Deep Learning (DL) techniques generate feature maps to enhance detection, but conventional methods suffer from high computational costs. To address this, we propose Multi-Scale Region-wise Pixel Analysis with GAN for Tiny Object Detection (MSRP-TODNet). The model is trained and tested on VisDrone VID 2019 and MS-COCO datasets. First, images undergo two-fold pre-processing using Improved Wiener Filter (IWF) for artifact removal and Adjusted Contrast Enhancement Method (ACEM) for blurring correction. The Multi-Agent Reinforcement Learning (MARL) algorithm splits the pre-processed image into four regions, analyzing each pixel to generate feature maps. These are processed by the Enhanced Feature Pyramid Network (EFPN), which merges them into a single feature map. Finally, a Generative Adversarial Network (GAN) detects objects with bounding boxes.</p><p><strong>Results: </strong>Experimental results on the DOTA dataset demonstrate that MSRP-TODNet outperforms existing state-of-the-art methods. Specifically, it achieves an mAP @0.5 of 84.2%, mAP @0.5:0.95 of 54.1%, and an F1-Score of 84.0%, surpassing improved TPH-YOLOv5, YOLOv7-Tiny, and DRDet by margins of 1.7%-6.1% in detection performance. These results demonstrate the framework's effectiveness for accurate, real-time small object detection in UAV surveillance and aerial imagery.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"200"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07263-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Detecting small, faraway objects in real-time surveillance is challenging due to limited pixel representation, affecting classifier performance. Deep Learning (DL) techniques generate feature maps to enhance detection, but conventional methods suffer from high computational costs. To address this, we propose Multi-Scale Region-wise Pixel Analysis with GAN for Tiny Object Detection (MSRP-TODNet). The model is trained and tested on VisDrone VID 2019 and MS-COCO datasets. First, images undergo two-fold pre-processing using Improved Wiener Filter (IWF) for artifact removal and Adjusted Contrast Enhancement Method (ACEM) for blurring correction. The Multi-Agent Reinforcement Learning (MARL) algorithm splits the pre-processed image into four regions, analyzing each pixel to generate feature maps. These are processed by the Enhanced Feature Pyramid Network (EFPN), which merges them into a single feature map. Finally, a Generative Adversarial Network (GAN) detects objects with bounding boxes.
Results: Experimental results on the DOTA dataset demonstrate that MSRP-TODNet outperforms existing state-of-the-art methods. Specifically, it achieves an mAP @0.5 of 84.2%, mAP @0.5:0.95 of 54.1%, and an F1-Score of 84.0%, surpassing improved TPH-YOLOv5, YOLOv7-Tiny, and DRDet by margins of 1.7%-6.1% in detection performance. These results demonstrate the framework's effectiveness for accurate, real-time small object detection in UAV surveillance and aerial imagery.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.