A tutorial for estimating Bayesian hierarchical mixture models for visual working memory tasks: Introducing the Bayesian Measurement Modeling (bmm) package for R.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Gidon T Frischkorn, Vencislav Popov
{"title":"A tutorial for estimating Bayesian hierarchical mixture models for visual working memory tasks: Introducing the Bayesian Measurement Modeling (bmm) package for R.","authors":"Gidon T Frischkorn, Vencislav Popov","doi":"10.3758/s13428-025-02643-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mixture models for visual working memory tasks using continuous report recall are highly popular measurement models in visual working memory research. Yet, efficient and easy-to-implement hierarchical Bayesian estimation procedures that flexibly enable group or condition comparisons are scarce. Specifically, most software packages implementing mixture models have used maximum likelihood estimation for single-subject data. Such estimation procedures require a large number of trials per participant to obtain robust and reliable estimates. This problem can be solved with hierarchical Bayesian estimation procedures that provide robust and reliable estimates with lower trial numbers. In this tutorial, we illustrate how mixture models for visual working memory tasks can be specified and fit in the newly developed R package bmm. The benefit of this implementation over existing hierarchical Bayesian implementations is that bmm integrates hierarchical Bayesian estimation of the mixture models with an efficient linear model syntax that enables us to adapt the mixture model to practically any experimental design. Specifically, this implementation allows for varying model parameters over arbitrary groups or experimental conditions. Additionally, the hierarchical structure and the specification of informed priors can frequently improve subject-level parameter estimation and solve estimation problems. We illustrate these benefits in different examples and provide R code for easy adaptation to other use cases.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 5","pages":"144"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02643-0","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mixture models for visual working memory tasks using continuous report recall are highly popular measurement models in visual working memory research. Yet, efficient and easy-to-implement hierarchical Bayesian estimation procedures that flexibly enable group or condition comparisons are scarce. Specifically, most software packages implementing mixture models have used maximum likelihood estimation for single-subject data. Such estimation procedures require a large number of trials per participant to obtain robust and reliable estimates. This problem can be solved with hierarchical Bayesian estimation procedures that provide robust and reliable estimates with lower trial numbers. In this tutorial, we illustrate how mixture models for visual working memory tasks can be specified and fit in the newly developed R package bmm. The benefit of this implementation over existing hierarchical Bayesian implementations is that bmm integrates hierarchical Bayesian estimation of the mixture models with an efficient linear model syntax that enables us to adapt the mixture model to practically any experimental design. Specifically, this implementation allows for varying model parameters over arbitrary groups or experimental conditions. Additionally, the hierarchical structure and the specification of informed priors can frequently improve subject-level parameter estimation and solve estimation problems. We illustrate these benefits in different examples and provide R code for easy adaptation to other use cases.

估计视觉工作记忆任务贝叶斯层次混合模型的教程:介绍R的贝叶斯测量建模(bmm)包。
使用连续报告回忆的视觉工作记忆任务混合模型是视觉工作记忆研究中非常流行的测量模型。然而,能够灵活地进行群体或条件比较的高效且易于实现的分层贝叶斯估计程序很少。具体来说,大多数实现混合模型的软件包都对单主体数据使用了最大似然估计。这样的估计程序需要对每个参与者进行大量的试验,以获得稳健和可靠的估计。这个问题可以用层次贝叶斯估计程序来解决,它提供了较低试验次数的鲁棒和可靠的估计。在本教程中,我们将说明如何在新开发的R包bmm中指定和适应视觉工作记忆任务的混合模型。与现有的层次贝叶斯实现相比,这种实现的好处是bmm将混合模型的层次贝叶斯估计与有效的线性模型语法集成在一起,使我们能够使混合模型适应几乎任何实验设计。具体来说,这种实现允许在任意组或实验条件下改变模型参数。此外,层次结构和知情先验的规范可以经常改善主题级参数估计和解决估计问题。我们将在不同的示例中说明这些优点,并提供R代码以便于适应其他用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信