{"title":"Enhancing mesothelin CAR T cell therapy for pancreatic cancer with an oncolytic herpes virus boosting CAR target antigen expression.","authors":"Mona Alhussein Aboalela, Mohamed Abdelmoneim, Shigeru Matsumura, Ibrahim Ragab Eissa, Itzel Bustos-Villalobos, Patricia Angela Sibal, Yu Orikono, Yuhei Takido, Yoshinori Naoe, Hideki Kasuya","doi":"10.1007/s00262-025-04039-7","DOIUrl":null,"url":null,"abstract":"<p><p>Mesothelin (MSLN) is a prominent target antigen for CAR T cell therapy due to its extensive expression in various solid tumors, including pancreatic cancer. However, the therapeutic efficacy of MSLN-targeted CAR T cell therapy has been limited in clinical trials for pancreatic cancer, often resulting in temporary stable disease as the best response. The heterogeneous expression of MSLN and its loss over time, along with the immunosuppressive tumor microenvironment (TME), are key factors restricting effectiveness. Oncolytic viruses are emerging cancer therapies that replicate in tumor cells and remodel the TME into an immunogenic state. Here, we engineered an oncolytic herpes simplex virus type 1 expressing human MSLN (HSV-MSLN) and evaluated its combination with MSLN-CAR T cells in a murine pancreatic ductal adenocarcinoma model. In vitro, HSV-MSLN effectively induced MSLN expression on murine pancreatic cancer cells, with subsequent cell lysis. In co-culture, HSV-MSLN-infected cancer cells activated MSLN-CAR T cells, which effectively eliminated the infected cells. In vivo, HSV-MSLN delivered MSLN on the tumor cell surface and reprogrammed the TME toward an immunogenic state. The combination therapy significantly enhanced antitumor efficacy, inducing activated, proliferative CD8<sup>+</sup> CAR T cells and reducing PD-1<sup>+</sup>TIM-3<sup>+</sup> exhausted endogenous CD8<sup>+</sup> T cells and regulatory T cells in tumors. Furthermore, the combination therapy increased migratory XCR1<sup>+</sup>CD103<sup>+</sup> dendritic cells (DCs) in tumors and tumor-draining lymph nodes (TDLNs) while expanding CD44<sup>+</sup>CD8<sup>+</sup> T cells with central and effector memory phenotypes. Taken together, these results demonstrate that HSV-MSLN reprograms immune cells in the TME and TDLNs and synergizes with MSLN-CAR T cells to enhance antitumor responses, leading to a more robust therapeutic effect.</p>","PeriodicalId":9595,"journal":{"name":"Cancer Immunology, Immunotherapy","volume":"74 7","pages":"202"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Immunology, Immunotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00262-025-04039-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mesothelin (MSLN) is a prominent target antigen for CAR T cell therapy due to its extensive expression in various solid tumors, including pancreatic cancer. However, the therapeutic efficacy of MSLN-targeted CAR T cell therapy has been limited in clinical trials for pancreatic cancer, often resulting in temporary stable disease as the best response. The heterogeneous expression of MSLN and its loss over time, along with the immunosuppressive tumor microenvironment (TME), are key factors restricting effectiveness. Oncolytic viruses are emerging cancer therapies that replicate in tumor cells and remodel the TME into an immunogenic state. Here, we engineered an oncolytic herpes simplex virus type 1 expressing human MSLN (HSV-MSLN) and evaluated its combination with MSLN-CAR T cells in a murine pancreatic ductal adenocarcinoma model. In vitro, HSV-MSLN effectively induced MSLN expression on murine pancreatic cancer cells, with subsequent cell lysis. In co-culture, HSV-MSLN-infected cancer cells activated MSLN-CAR T cells, which effectively eliminated the infected cells. In vivo, HSV-MSLN delivered MSLN on the tumor cell surface and reprogrammed the TME toward an immunogenic state. The combination therapy significantly enhanced antitumor efficacy, inducing activated, proliferative CD8+ CAR T cells and reducing PD-1+TIM-3+ exhausted endogenous CD8+ T cells and regulatory T cells in tumors. Furthermore, the combination therapy increased migratory XCR1+CD103+ dendritic cells (DCs) in tumors and tumor-draining lymph nodes (TDLNs) while expanding CD44+CD8+ T cells with central and effector memory phenotypes. Taken together, these results demonstrate that HSV-MSLN reprograms immune cells in the TME and TDLNs and synergizes with MSLN-CAR T cells to enhance antitumor responses, leading to a more robust therapeutic effect.
期刊介绍:
Cancer Immunology, Immunotherapy has the basic aim of keeping readers informed of the latest research results in the fields of oncology and immunology. As knowledge expands, the scope of the journal has broadened to include more of the progress being made in the areas of biology concerned with biological response modifiers. This helps keep readers up to date on the latest advances in our understanding of tumor-host interactions.
The journal publishes short editorials including "position papers," general reviews, original articles, and short communications, providing a forum for the most current experimental and clinical advances in tumor immunology.