Small-molecule RNA ligands: a patent review (2018-2024).

IF 4.6 2区 医学 Q1 CHEMISTRY, MEDICINAL
Expert Opinion on Therapeutic Patents Pub Date : 2025-07-01 Epub Date: 2025-04-16 DOI:10.1080/13543776.2025.2492759
Elia Ravegnini, Andrea Trabocchi, Elena Lenci
{"title":"Small-molecule RNA ligands: a patent review (2018-2024).","authors":"Elia Ravegnini, Andrea Trabocchi, Elena Lenci","doi":"10.1080/13543776.2025.2492759","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Targeting three-dimensional RNA structures with traditional drug-like small molecules is gaining wide attention in both the academia and the pharmaceutical industries, due to their good oral bioavailability, cheap production cost, and the possibility of fine-tuning ADMET properties, which represent a powerful alternative to the current RNA-targeted therapies, including ASO and siRNA. As RNAs are involved in nearly all the physiological and pathological processes, small molecules RNA ligands can have a plethora of different therapeutic applications, spanning from cancer to infectious and neurological diseases.</p><p><strong>Areas covered: </strong>This review describes patents concerning small molecules RNA ligands published within January 2018 and October 2024, searched through Espacenet, Patentscope, and Google Patents databases.</p><p><strong>Expert opinion: </strong>The number of patents that has been released in the last few years demonstrates the relevance of targeting RNA structures for the development of next generation chemotherapeutic agents and antiviral/antibacterial drugs, even though this field is still in its infancy and many issues still need to be resolved, in particular related to selectivity. An emerging approach to considerably limiting side effects is presented by RIBOTAC derivatives, as promoting a selective RNase-L mediated RNA degradation allows to significantly reduce the dose of the compound.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"675-693"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2025.2492759","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Targeting three-dimensional RNA structures with traditional drug-like small molecules is gaining wide attention in both the academia and the pharmaceutical industries, due to their good oral bioavailability, cheap production cost, and the possibility of fine-tuning ADMET properties, which represent a powerful alternative to the current RNA-targeted therapies, including ASO and siRNA. As RNAs are involved in nearly all the physiological and pathological processes, small molecules RNA ligands can have a plethora of different therapeutic applications, spanning from cancer to infectious and neurological diseases.

Areas covered: This review describes patents concerning small molecules RNA ligands published within January 2018 and October 2024, searched through Espacenet, Patentscope, and Google Patents databases.

Expert opinion: The number of patents that has been released in the last few years demonstrates the relevance of targeting RNA structures for the development of next generation chemotherapeutic agents and antiviral/antibacterial drugs, even though this field is still in its infancy and many issues still need to be resolved, in particular related to selectivity. An emerging approach to considerably limiting side effects is presented by RIBOTAC derivatives, as promoting a selective RNase-L mediated RNA degradation allows to significantly reduce the dose of the compound.

小分子RNA配体:专利审查(2018-2024)。
摘要:利用传统的类药物小分子靶向三维RNA结构,由于其良好的口服生物利用度、低廉的生产成本以及ADMET特性的可调性,成为当前RNA靶向治疗(包括ASO和siRNA)的有力替代方案,正受到学术界和制药行业的广泛关注。由于RNA几乎参与了所有的生理和病理过程,小分子RNA配体可以有大量不同的治疗应用,从癌症到感染性和神经系统疾病。涵盖领域:本综述描述了2018年1月至2024年10月期间发表的有关小分子RNA配体的专利,通过Espacenet、Patentscope和谷歌专利数据库进行检索。专家意见:过去几年发布的专利数量表明,靶向RNA结构与开发下一代化疗药物和抗病毒/抗菌药物的相关性,尽管该领域仍处于起步阶段,许多问题仍需要解决,特别是与选择性有关的问题。RIBOTAC衍生物提出了一种相当限制副作用的新方法,因为促进选择性RNase-L介导的RNA降解可以显着减少化合物的剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
1.50%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature. The Editors welcome: Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area Patent Evaluations examining the aims and chemical and biological claims of individual patents Perspectives on issues relating to intellectual property The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信