Nanozymes or Spirulina Platensis: Enhancing Sheep Thermo-Tolerance Through Physio-Metabolic, Immune, and Antioxidant Pathways.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ahmed I M Alfaraj, Hemat K Mahmoud, Fayiz M Reda, Usama M Abdel Monem, Layla A Almutairi, Eman A Al-Shahari, Rabah N Alsulami, Sameh A Abdelnour
{"title":"Nanozymes or Spirulina Platensis: Enhancing Sheep Thermo-Tolerance Through Physio-Metabolic, Immune, and Antioxidant Pathways.","authors":"Ahmed I M Alfaraj, Hemat K Mahmoud, Fayiz M Reda, Usama M Abdel Monem, Layla A Almutairi, Eman A Al-Shahari, Rabah N Alsulami, Sameh A Abdelnour","doi":"10.1007/s12011-025-04656-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the potential of supplementing sheep diets with cobalt (CoNPs), iron (FeNPs) nanoparticles, or Spirulina platensis (SP) to tackle the adverse impacts of heat stress by assessing growth performance, oxidative status, metabolic pathways, immune parameters, gene expression, and hormone levels in sheep exposed to hot environmental conditions. A total of 32 Rahmani male lambs were randomly divided into four equal groups (n = 8). The CON group was fed the control diet or supplemented with 2 mg/kg of CoNPs (CoNPs group), 50 mg/kg of FeNPs (FeNPs group), or 1 g of SP/kg (SP group) diet for 3 months. The average size of nanozymes CoNPs and FeNPs were 41 and 44 nm, respectively. The temperature humidity index (THI) was 81.99 overall the study period. All nanozyme or SP treatments significantly (P < 0.05) enhanced growth performance, including final and average body weight, and dry matter intake. Nanozyme treatments also achieved the best results regarding hematocrit (P < 0.01) and platelets (P < 0.01). All supplemented groups exhibited lower WBC and lymphocyte counts, and higher globulin levels in comparison to stressed sheep. Total protein levels were significantly (P < 0.001) elevated in the FeNPs and SP groups compared to the remaining groups. Rams fed CoNPs or SP had notably (P < 0.001) higher TC and TG levels, while the FeNPs group showed the lowest TC levels (P < 0.05), as well as the lowest VLDL and LDL levels (P < 0.05). The levels of blood immune markers, specifically lysozyme, IgG, and IgM, were significantly (P < 0.05) elevated in all supplemented groups in comparison to the untreated group. Furthermore, rams receiving FeNPs demonstrated higher (P < 0.05) values for TAC, CAT, SOD, and GPX, and lower MDA levels than the other groups. Additionally, the supplemented group exhibited greater (P < 0.05) leptin and testosterone levels than the stressed group. Further, serum concentrations of zinc, selenium, and iron were significantly (P < 0.05) greater in the nano-feed additives and SP groups compared to the HS group. Dietary supplementation with nanozymes or SP notably (P < 0.05) upregulated GPX1 and HSP70 expression and downregulated TNF-alpha mRNA levels (P < 0.05). In summary, dietary supplementation with nanozymes or microalgae robustly bolstered sheep's immune-antioxidant capacity, improved growth performance, and promoted health under heat stress conditions relevant to global warming.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-025-04656-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the potential of supplementing sheep diets with cobalt (CoNPs), iron (FeNPs) nanoparticles, or Spirulina platensis (SP) to tackle the adverse impacts of heat stress by assessing growth performance, oxidative status, metabolic pathways, immune parameters, gene expression, and hormone levels in sheep exposed to hot environmental conditions. A total of 32 Rahmani male lambs were randomly divided into four equal groups (n = 8). The CON group was fed the control diet or supplemented with 2 mg/kg of CoNPs (CoNPs group), 50 mg/kg of FeNPs (FeNPs group), or 1 g of SP/kg (SP group) diet for 3 months. The average size of nanozymes CoNPs and FeNPs were 41 and 44 nm, respectively. The temperature humidity index (THI) was 81.99 overall the study period. All nanozyme or SP treatments significantly (P < 0.05) enhanced growth performance, including final and average body weight, and dry matter intake. Nanozyme treatments also achieved the best results regarding hematocrit (P < 0.01) and platelets (P < 0.01). All supplemented groups exhibited lower WBC and lymphocyte counts, and higher globulin levels in comparison to stressed sheep. Total protein levels were significantly (P < 0.001) elevated in the FeNPs and SP groups compared to the remaining groups. Rams fed CoNPs or SP had notably (P < 0.001) higher TC and TG levels, while the FeNPs group showed the lowest TC levels (P < 0.05), as well as the lowest VLDL and LDL levels (P < 0.05). The levels of blood immune markers, specifically lysozyme, IgG, and IgM, were significantly (P < 0.05) elevated in all supplemented groups in comparison to the untreated group. Furthermore, rams receiving FeNPs demonstrated higher (P < 0.05) values for TAC, CAT, SOD, and GPX, and lower MDA levels than the other groups. Additionally, the supplemented group exhibited greater (P < 0.05) leptin and testosterone levels than the stressed group. Further, serum concentrations of zinc, selenium, and iron were significantly (P < 0.05) greater in the nano-feed additives and SP groups compared to the HS group. Dietary supplementation with nanozymes or SP notably (P < 0.05) upregulated GPX1 and HSP70 expression and downregulated TNF-alpha mRNA levels (P < 0.05). In summary, dietary supplementation with nanozymes or microalgae robustly bolstered sheep's immune-antioxidant capacity, improved growth performance, and promoted health under heat stress conditions relevant to global warming.

纳米酶或螺旋藻:通过生理代谢、免疫和抗氧化途径增强绵羊的耐热性。
本研究通过评估暴露在高温环境条件下的绵羊的生长性能、氧化状态、代谢途径、免疫参数、基因表达和激素水平,评估了在绵羊日粮中添加钴(CoNPs)、铁(FeNPs)纳米颗粒或螺旋藻(SP)应对热应激不利影响的潜力。选取32只拉赫马尼公羊羔,随机分为4组(n = 8)。CON组饲喂对照饲粮或在对照组饲粮中添加2 mg/kg的CoNPs (CoNPs组)、50 mg/kg的FeNPs (FeNPs组)或1 g SP/kg的SP (SP组),试验期3个月。纳米酶CoNPs和FeNPs的平均大小分别为41和44 nm。整个研究期间的温度湿度指数(THI)为81.99。纳米酶和SP处理均显著(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信