Morphological characterization of spermatogenesis and spermatogonial stem cells in Larimichthys crocea, a seasonal breeding teleost†.

IF 3.1 2区 生物学 Q2 REPRODUCTIVE BIOLOGY
Yinan Zhou, Yang Yang, Huan Ye, Lulu Mi, Weihua Hu, Dongdong Xu
{"title":"Morphological characterization of spermatogenesis and spermatogonial stem cells in Larimichthys crocea, a seasonal breeding teleost†.","authors":"Yinan Zhou, Yang Yang, Huan Ye, Lulu Mi, Weihua Hu, Dongdong Xu","doi":"10.1093/biolre/ioaf065","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal spermatogenesis in fish is a complex and highly regulated process in which spermatogonial stem cells (SSCs) undergo a series of cellular changes to differentiate into mature sperm. In this study, we systematically described testicular development and identified thirteen different germ cell types throughout the reproductive cycle in large yellow croaker (Larimichthys crocea), a commercially important marine cultured fish in East Asia. Using a set of specific antibodies (VASA, PCNA, DMC1, NANOS2 and GSDF), we developed a high-throughput immunohistochemistry method to identify different types of spermatogenic cells, with a particular focus on distinguishing spermatogonial subtypes. VASA was strongly expressed in all four types of spermatogonia (As, Apr, Adiff and B) and decreased progressively during spermatogenesis. DMC1 exhibited distinct expression patterns in different spermatocytes subtypes, and GSDF was highly expressed in somatic cells surrounding type A spermatogonia. Particularly, NANOS2 was highly specific to As and Apr spermatogonia, supporting their role as SSC candidates. By morphological observation and co-staining of VASA and PCNA, we found that As spermatogonia exhibited dynamic development characteristics during the annual reproductive cycle. These findings provide a valuable tool for reproductive studies and potential applications in surrogate reproduction through SSCs transplantation in teleost fish.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioaf065","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Seasonal spermatogenesis in fish is a complex and highly regulated process in which spermatogonial stem cells (SSCs) undergo a series of cellular changes to differentiate into mature sperm. In this study, we systematically described testicular development and identified thirteen different germ cell types throughout the reproductive cycle in large yellow croaker (Larimichthys crocea), a commercially important marine cultured fish in East Asia. Using a set of specific antibodies (VASA, PCNA, DMC1, NANOS2 and GSDF), we developed a high-throughput immunohistochemistry method to identify different types of spermatogenic cells, with a particular focus on distinguishing spermatogonial subtypes. VASA was strongly expressed in all four types of spermatogonia (As, Apr, Adiff and B) and decreased progressively during spermatogenesis. DMC1 exhibited distinct expression patterns in different spermatocytes subtypes, and GSDF was highly expressed in somatic cells surrounding type A spermatogonia. Particularly, NANOS2 was highly specific to As and Apr spermatogonia, supporting their role as SSC candidates. By morphological observation and co-staining of VASA and PCNA, we found that As spermatogonia exhibited dynamic development characteristics during the annual reproductive cycle. These findings provide a valuable tool for reproductive studies and potential applications in surrogate reproduction through SSCs transplantation in teleost fish.

季节性繁殖硬骨鱼(Larimichthys crocea)精子发生和精原干细胞的形态学特征。
鱼类的季节性精子发生是一个复杂而高度调控的过程,在这个过程中,精原干细胞(SSCs)经历了一系列的细胞变化来分化成成熟的精子。在本研究中,我们系统地描述了大黄鱼(Larimichthys crocea)在整个生殖周期中的睾丸发育,并鉴定了13种不同的生殖细胞类型。利用一组特异性抗体(VASA, PCNA, DMC1, NANOS2和GSDF),我们开发了一种高通量免疫组织化学方法来鉴定不同类型的生精细胞,特别注重区分精原细胞亚型。VASA在4种类型精原细胞(As、Apr、Adiff和B)中均有强烈表达,并在精子发生过程中逐渐降低。DMC1在不同精原细胞亚型中表达模式不同,GSDF在A型精原细胞周围体细胞中高表达。特别是,NANOS2对a和Apr精原细胞具有高度特异性,支持它们作为SSC候选细胞的作用。通过形态学观察和VASA和PCNA的共染色,我们发现As精原细胞在每年的生殖周期中表现出动态的发育特征。这些发现为硬骨鱼生殖研究提供了有价值的工具,并为硬骨鱼ssc移植代生殖提供了潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology of Reproduction
Biology of Reproduction 生物-生殖生物学
CiteScore
6.30
自引率
5.60%
发文量
214
审稿时长
1 months
期刊介绍: Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信