Deep linear matrix approximate reconstruction with integrated BOLD signal denoising reveals reproducible hierarchical brain connectivity networks from multiband multi-echo fMRI.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-04-16 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1577029
Wei Zhang, Alexander Cohen, Michael McCrea, Pratik Mukherjee, Yang Wang
{"title":"Deep linear matrix approximate reconstruction with integrated BOLD signal denoising reveals reproducible hierarchical brain connectivity networks from multiband multi-echo fMRI.","authors":"Wei Zhang, Alexander Cohen, Michael McCrea, Pratik Mukherjee, Yang Wang","doi":"10.3389/fnins.2025.1577029","DOIUrl":null,"url":null,"abstract":"<p><p>The hierarchical modular functional structure in the human brain has not been adequately depicted by conventional functional magnetic resonance imaging (fMRI) acquisition techniques and traditional functional connectivity reconstruction methods. Fortunately, rapid advancements in fMRI scanning techniques and deep learning methods open a novel frontier to map the spatial hierarchy within Brain Connectivity Networks (BCNs). The novel multiband multi-echo (MBME) fMRI technique has increased spatiotemporal resolution and peak functional sensitivity, while the advanced deep linear model (multilayer-stacked) named DEep Linear Matrix Approximate Reconstruction (DELMAR) enables the identification of hierarchical features without extensive hyperparameter tuning. We incorporate a multi-echo blood oxygenation level-dependent (BOLD) signal and DELMAR for denoising in its first layer, thereby eliminating the need for a separate multi-echo independent component analysis (ME-ICA) denoising step. Our results demonstrate that the DELMAR/Denoising/Mapping strategy produces more accurate and reproducible hierarchical BCNs than traditional ME-ICA denoising followed by DELMAR. Additionally, we showcase that MBME fMRI outperforms multiband (MB) fMRI in terms of hierarchical BCN mapping accuracy and precision. These reproducible spatial hierarchies in BCNs have significant potential for developing improved fMRI diagnostic and prognostic biomarkers of functional connectivity across a wide range of neurological and psychiatric disorders.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1577029"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1577029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The hierarchical modular functional structure in the human brain has not been adequately depicted by conventional functional magnetic resonance imaging (fMRI) acquisition techniques and traditional functional connectivity reconstruction methods. Fortunately, rapid advancements in fMRI scanning techniques and deep learning methods open a novel frontier to map the spatial hierarchy within Brain Connectivity Networks (BCNs). The novel multiband multi-echo (MBME) fMRI technique has increased spatiotemporal resolution and peak functional sensitivity, while the advanced deep linear model (multilayer-stacked) named DEep Linear Matrix Approximate Reconstruction (DELMAR) enables the identification of hierarchical features without extensive hyperparameter tuning. We incorporate a multi-echo blood oxygenation level-dependent (BOLD) signal and DELMAR for denoising in its first layer, thereby eliminating the need for a separate multi-echo independent component analysis (ME-ICA) denoising step. Our results demonstrate that the DELMAR/Denoising/Mapping strategy produces more accurate and reproducible hierarchical BCNs than traditional ME-ICA denoising followed by DELMAR. Additionally, we showcase that MBME fMRI outperforms multiband (MB) fMRI in terms of hierarchical BCN mapping accuracy and precision. These reproducible spatial hierarchies in BCNs have significant potential for developing improved fMRI diagnostic and prognostic biomarkers of functional connectivity across a wide range of neurological and psychiatric disorders.

融合BOLD信号去噪的深度线性矩阵近似重建揭示了多波段多回波fMRI可再现的分层大脑连接网络。
传统的功能磁共振成像(fMRI)采集技术和传统的功能连接重建方法尚未充分描述人脑的分层模块化功能结构。幸运的是,功能磁共振成像扫描技术和深度学习方法的快速发展为绘制脑连接网络(bcn)中的空间层次开辟了新的前沿。新型的多波段多回波(MBME) fMRI技术提高了时空分辨率和峰值功能灵敏度,而先进的深度线性模型(多层堆叠)称为深度线性矩阵近似重建(DELMAR),无需大量的超参数调谐即可识别层次特征。我们将多回波血氧水平相关(BOLD)信号和DELMAR信号结合在第一层进行去噪,从而消除了单独的多回波独立分量分析(ME-ICA)去噪步骤的需要。我们的研究结果表明,DELMAR/去噪/映射策略比传统的ME-ICA去噪后的DELMAR产生更准确和可重复的分层bcn。此外,我们展示了MBME fMRI在分层BCN映射精度和精度方面优于多波段(MB) fMRI。bcn中这些可重复的空间层次具有开发改进的fMRI诊断和预后生物标志物的巨大潜力,这些生物标志物可用于广泛的神经和精神疾病的功能连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信