Cardiac endothelial cells and cardiomyocytes alter their communication properties in diabetic mice.

IF 4.3 2区 生物学 Q1 BIOLOGY
Yan Wen, Qing Wang
{"title":"Cardiac endothelial cells and cardiomyocytes alter their communication properties in diabetic mice.","authors":"Yan Wen, Qing Wang","doi":"10.1186/s40659-025-00602-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We aimed to explore the heterogeneities and communication properties of cardiac CMs and ECs in diabetes.</p><p><strong>Methods: </strong>GSE213337 dataset was retrieved from NCBI Gene Expression Omnibus, containing the single-cell RNA sequencing data of hearts from the control and streptozotocin-induced diabetic mice. Cell cluster analysis was performed to identify the cell atlas. Data of CMs and ECs were extracted individually for re-cluster analysis, functional enrichment analysis and trajectory analysis. Cell communication analysis was conducted to explore the altered signals and significant ligand-receptor interactions.</p><p><strong>Results: </strong>Eleven cell types were identified in the heart tissue. CMs were re-clustered into four subclusters, and cluster 4 was dominant in diabetic condition and enriched in cellular energy metabolism processes. ECs were re-clustered into six subclusters, and clusters 2, 4 and 5 were dominant in the diabetic condition and mainly enriched in cellular energy metabolism and lipid transport processes. The cellular communication network was altered in the diabetic heart. ECs dominated the overall signaling and notably increased the ANGPTL and SEMA4 signals in the diabetic heart. Four significant ligand-receptor pairs implicating the two signals contributed to the communication between ECs and other cell types, including Angptl1-(Itga1 + Itgb1), Angptl4-Cdh5, Angptl4-Sdc3, and Sema4a-(Nrp + Plxna2). The ligand Angptl4 engaged in ECs-CMs communication in a paracrine manner.</p><p><strong>Conclusion: </strong>Single-cell sequencing analysis revealed heterogeneities of ECs and CMs in diabetes, Angptl4-Cdh5 and Angptl4-Sdc3 were involved in the communication between ECs and CMs in diabetes.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"58 1","pages":"23"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-025-00602-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: We aimed to explore the heterogeneities and communication properties of cardiac CMs and ECs in diabetes.

Methods: GSE213337 dataset was retrieved from NCBI Gene Expression Omnibus, containing the single-cell RNA sequencing data of hearts from the control and streptozotocin-induced diabetic mice. Cell cluster analysis was performed to identify the cell atlas. Data of CMs and ECs were extracted individually for re-cluster analysis, functional enrichment analysis and trajectory analysis. Cell communication analysis was conducted to explore the altered signals and significant ligand-receptor interactions.

Results: Eleven cell types were identified in the heart tissue. CMs were re-clustered into four subclusters, and cluster 4 was dominant in diabetic condition and enriched in cellular energy metabolism processes. ECs were re-clustered into six subclusters, and clusters 2, 4 and 5 were dominant in the diabetic condition and mainly enriched in cellular energy metabolism and lipid transport processes. The cellular communication network was altered in the diabetic heart. ECs dominated the overall signaling and notably increased the ANGPTL and SEMA4 signals in the diabetic heart. Four significant ligand-receptor pairs implicating the two signals contributed to the communication between ECs and other cell types, including Angptl1-(Itga1 + Itgb1), Angptl4-Cdh5, Angptl4-Sdc3, and Sema4a-(Nrp + Plxna2). The ligand Angptl4 engaged in ECs-CMs communication in a paracrine manner.

Conclusion: Single-cell sequencing analysis revealed heterogeneities of ECs and CMs in diabetes, Angptl4-Cdh5 and Angptl4-Sdc3 were involved in the communication between ECs and CMs in diabetes.

糖尿病小鼠心脏内皮细胞和心肌细胞改变其通讯特性。
目的:探讨糖尿病患者心脏CMs和ECs的异质性和通讯特性。方法:从NCBI Gene Expression Omnibus中检索GSE213337数据集,其中包含对照和链脲霉素诱导的糖尿病小鼠心脏单细胞RNA测序数据。细胞聚类分析鉴定细胞图谱。分别提取CMs和ec的数据进行重聚类分析、功能富集分析和轨迹分析。进行细胞通讯分析以探索改变的信号和显著的配体-受体相互作用。结果:在心脏组织中鉴定出11种细胞类型。CMs被重新聚为4个亚簇,其中簇4在糖尿病中占主导地位,并在细胞能量代谢过程中富集。ECs被重新聚为6个亚簇,其中簇2、4和5在糖尿病状态下占主导地位,主要富集于细胞能量代谢和脂质转运过程。糖尿病心脏的细胞通讯网络发生了改变。ECs主导了糖尿病心脏的整体信号,并显著增加了ANGPTL和SEMA4信号。包括Angptl1-(Itga1 + Itgb1)、Angptl4-Cdh5、angptl4 - sdh3和Sema4a-(Nrp + Plxna2)在内的四个重要的配体受体对参与了ECs与其他细胞类型之间的通信。配体Angptl4以旁分泌的方式参与ec - cms的通讯。结论:单细胞测序分析显示糖尿病ECs和CMs存在异质性,Angptl4-Cdh5和angptl4 - sdh3参与了糖尿病ECs和CMs之间的通讯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信