Hongji Xu, Hongye Wang, Xiang Yang, Iver Grønlien, Arthur Georg Serville Torvund, Angelos Xomalis, Zhenyu Zhao
{"title":"Identifying phenotypes of colorectal malignant tumors using the quasi-bound state in the continuum of a terahertz metasurface biosensor.","authors":"Hongji Xu, Hongye Wang, Xiang Yang, Iver Grønlien, Arthur Georg Serville Torvund, Angelos Xomalis, Zhenyu Zhao","doi":"10.1364/BOE.557218","DOIUrl":null,"url":null,"abstract":"<p><p>A rapid and non-invasive method to identify phenotypes of colorectal malignant tumors is of vital importance for oncological surgery and further development of corresponding anti-tumor drugs. Herein, we demonstrate an approach to detect colorectal adenocarcinoma and colorectal cancer using the quasi-bound state in the continuum (q-BIC) resonance of a metasurface-based terahertz biosensor. We found that the colorectal adenocarcinoma leads to a 40 GHz q-BIC resonance shift compared to healthy colorectal cells. In addition, we found that colorectal cancer results in a q-BIC resonance red-shift of about 60 to 80 GHz. Both colorectal adenocarcinoma and cancer increase the linewidth of q-BIC resonance compared to healthy colorectal cells. The electric permittivity change confirms the aforementioned frequency shift, which is attributed to the water content of different colorectal malignant tumor cells. Our results highlight that the q-BIC resonance of a terahertz photonic biosensor offers a rapid and non-invasive methodology for identifying different colorectal malignant tumors, which accelerates oncological diagnosis.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 4","pages":"1471-1482"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047722/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.557218","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A rapid and non-invasive method to identify phenotypes of colorectal malignant tumors is of vital importance for oncological surgery and further development of corresponding anti-tumor drugs. Herein, we demonstrate an approach to detect colorectal adenocarcinoma and colorectal cancer using the quasi-bound state in the continuum (q-BIC) resonance of a metasurface-based terahertz biosensor. We found that the colorectal adenocarcinoma leads to a 40 GHz q-BIC resonance shift compared to healthy colorectal cells. In addition, we found that colorectal cancer results in a q-BIC resonance red-shift of about 60 to 80 GHz. Both colorectal adenocarcinoma and cancer increase the linewidth of q-BIC resonance compared to healthy colorectal cells. The electric permittivity change confirms the aforementioned frequency shift, which is attributed to the water content of different colorectal malignant tumor cells. Our results highlight that the q-BIC resonance of a terahertz photonic biosensor offers a rapid and non-invasive methodology for identifying different colorectal malignant tumors, which accelerates oncological diagnosis.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.