Lyudmila Tikhonova, Eugene Maevsky, Carmina Montoliu, Elena Kosenko
{"title":"Valproate Damaging Effect on Erythrocyte Metabolism as a Decisive Factor in the Development of Encephalopathy.","authors":"Lyudmila Tikhonova, Eugene Maevsky, Carmina Montoliu, Elena Kosenko","doi":"10.3390/biom15040588","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Valproic acid (VPA) is a mainstay of treatment for epilepsy. Although VPA is generally considered well tolerated, it has serious adverse effects related to the pathological impact on cerebral perfusion and oxidative metabolism, leading to progressive encephalopathy. Erythrocytes directly deliver oxygen to the tissues. To understand how the brain pathology may be related to limited oxygenation, it is important to determine whether VPA-related changes occur in the intracellular erythrocyte metabolism responsible for the oxygen transport function.</p><p><strong>Methods: </strong>To determine whether different therapeutic VPA doses affect major metabolic pathways in rat erythrocytes, the activity of rate-limiting enzymes and levels of metabolites of glycolysis, the Rapoport-Luebering shunt, the pentose phosphate pathway and the antioxidant systems were measured.</p><p><strong>Results: </strong>Our data showed that VPA-induced G6PD inhibition leads to profound oxidative stress, increased MetHb formation and decreased 2,3-DPG and ATP levels in erythrocytes that underlie the loss of their oxygen transport function, thus being a cause of a brain energy crisis that precedes encephalopathy.</p><p><strong>Conclusions: </strong>The measurement of parameters in metabolic pathways modulating the redox-signaling and oxygen-carrying capacity of erythrocytes is needed for further elucidation of complex mechanisms underlying VPA-induced brain hypoperfusion and encephalopathy.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 4","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15040588","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Valproic acid (VPA) is a mainstay of treatment for epilepsy. Although VPA is generally considered well tolerated, it has serious adverse effects related to the pathological impact on cerebral perfusion and oxidative metabolism, leading to progressive encephalopathy. Erythrocytes directly deliver oxygen to the tissues. To understand how the brain pathology may be related to limited oxygenation, it is important to determine whether VPA-related changes occur in the intracellular erythrocyte metabolism responsible for the oxygen transport function.
Methods: To determine whether different therapeutic VPA doses affect major metabolic pathways in rat erythrocytes, the activity of rate-limiting enzymes and levels of metabolites of glycolysis, the Rapoport-Luebering shunt, the pentose phosphate pathway and the antioxidant systems were measured.
Results: Our data showed that VPA-induced G6PD inhibition leads to profound oxidative stress, increased MetHb formation and decreased 2,3-DPG and ATP levels in erythrocytes that underlie the loss of their oxygen transport function, thus being a cause of a brain energy crisis that precedes encephalopathy.
Conclusions: The measurement of parameters in metabolic pathways modulating the redox-signaling and oxygen-carrying capacity of erythrocytes is needed for further elucidation of complex mechanisms underlying VPA-induced brain hypoperfusion and encephalopathy.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.