3D bioprinting of human iPSC-derived cardiac constructs with microvascular network support for improved graft survivalin vivo.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Léa Pourchet, Laura Casado-Medina, Yvonne Richaud-Patin, Karine Tadevosyan, Alba Morillas-García, Edgar Lorenzo, Ioannis Lazis, Antoni Ventura, Jagoda Litowczenko, Jordi Guiu, Angel Raya
{"title":"3D bioprinting of human iPSC-derived cardiac constructs with microvascular network support for improved graft survival<i>in vivo</i>.","authors":"Léa Pourchet, Laura Casado-Medina, Yvonne Richaud-Patin, Karine Tadevosyan, Alba Morillas-García, Edgar Lorenzo, Ioannis Lazis, Antoni Ventura, Jagoda Litowczenko, Jordi Guiu, Angel Raya","doi":"10.1088/1758-5090/add627","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac tissue engineering is a rapidly growing field that holds great promise for the development of new therapies for heart disease. While significant progress has been made in the field over the past two decades, engineering functional myocardium of clinically relevant size and thickness remains an unmet challenge. A major roadblock in this respect is the current difficulty in incorporating efficient vascularization into engineered constructs. One potential solution involves the use of microvascular fragments from adipose tissue, which have demonstrated encouraging results in improving vascularization and graft survival following transplantation. However, this method lacks precise control over the vascular architecture within the constructs. Here, we set out to investigate the use of 3D bioprinting for the fabrication of human cardiac tissue constructs composed of human induced pluripotent stem cell derivatives, while allowing for the precise control of the distribution and density of microvessel fragments within the bioprinted constructs. We carefully selected and optimized bioink compositions based on their printability, biocompatibility, and construct stability. Following transplantation into immunodeficient mice, 3D bioprinted cardiac constructs containing microvessel fragments exhibited rapid and efficient vascularization, resulting in prolonged graft survival. Overall, our studies underscore the advantages of employing engineering design and self-assembly across different scales to address current limitations of tissue engineering, and highlight the usefulness of 3D bioprinting in this context.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/add627","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac tissue engineering is a rapidly growing field that holds great promise for the development of new therapies for heart disease. While significant progress has been made in the field over the past two decades, engineering functional myocardium of clinically relevant size and thickness remains an unmet challenge. A major roadblock in this respect is the current difficulty in incorporating efficient vascularization into engineered constructs. One potential solution involves the use of microvascular fragments from adipose tissue, which have demonstrated encouraging results in improving vascularization and graft survival following transplantation. However, this method lacks precise control over the vascular architecture within the constructs. Here, we set out to investigate the use of 3D bioprinting for the fabrication of human cardiac tissue constructs composed of human induced pluripotent stem cell derivatives, while allowing for the precise control of the distribution and density of microvessel fragments within the bioprinted constructs. We carefully selected and optimized bioink compositions based on their printability, biocompatibility, and construct stability. Following transplantation into immunodeficient mice, 3D bioprinted cardiac constructs containing microvessel fragments exhibited rapid and efficient vascularization, resulting in prolonged graft survival. Overall, our studies underscore the advantages of employing engineering design and self-assembly across different scales to address current limitations of tissue engineering, and highlight the usefulness of 3D bioprinting in this context.

具有微血管网络支持的人类ipsc衍生心脏结构的3D生物打印,可提高移植物在体内的存活率。
心脏组织工程是一个快速发展的领域,为心脏病的新疗法的发展提供了巨大的希望。虽然在过去的二十年中,该领域取得了重大进展,但具有临床相关尺寸和厚度的工程功能心肌仍然是一个未解决的挑战。这方面的一个主要障碍是目前难以将有效血管化纳入工程结构。一种潜在的解决方案涉及使用脂肪组织的微血管碎片,这在改善移植后的血管化和移植物存活方面已经证明了令人鼓舞的结果。然而,这种方法缺乏对构造内血管结构的精确控制。在这里,我们着手研究使用生物3D打印技术制造由人类诱导多能干细胞(hiPSC)衍生物组成的人类心脏组织构建体,同时允许在生物打印构建体中精确控制微血管碎片的分布和密度。我们根据其可打印性、生物相容性和结构稳定性仔细选择和优化了生物墨水成分。移植到免疫缺陷小鼠体内后,生物3D打印的含有微血管碎片的心脏构建物表现出快速有效的血管化,从而延长了移植物的存活时间。总的来说,我们的研究强调了在不同尺度上采用工程设计和自组装的优势,以解决当前组织工程的局限性,并强调了3D生物打印在这种情况下的实用性。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信