Ebenezer Binuni Rebez, Chinnasamy Devaraj, Jacob Ninan, Mullakkalparambil Velayudhan Silpa, Shanmugam Venkatesa Perumal, Artabandhu Sahoo, Frank Rowland Dunshea, Veerasamy Sejian
{"title":"Effects of Herbal Supplementation on Growth Performance of Kenguri Sheep Exposed to Heat Stress.","authors":"Ebenezer Binuni Rebez, Chinnasamy Devaraj, Jacob Ninan, Mullakkalparambil Velayudhan Silpa, Shanmugam Venkatesa Perumal, Artabandhu Sahoo, Frank Rowland Dunshea, Veerasamy Sejian","doi":"10.3390/ani15091285","DOIUrl":null,"url":null,"abstract":"<p><p>A study was designed to explore the possibility of using herbal supplementation to sustain growth performance during heat stress exposure in Kenguri sheep. This 60-day study was conducted on 24 Kenguri ewes (1-2 years old), randomly assigned to four treatment groups (<i>n</i> = 6 per group) as follows: KC (<i>n</i> = 6; Kenguri Control), KHS (<i>n</i> = 6; Kenguri Heat Stress), KCS (<i>n</i> = 6; Kenguri Control and herbal supplement), and KHSS (<i>n</i> = 6; Kenguri Heat Stress and herbal supplement). The herbal mixture of Ocimum sanctum (Tulsi), Emblica officinalis (Amla), Morinda citrifolia (Noni), Withania somnifera (Ashwagandha), and Phyllostachys edulis (Bamboo) was used in this study. The herbal supplement used in the present study was given to the KCS and KHSS groups' animals in dry powder form at a dose of 0.8 g/Kg BW/Day. All variables were recorded fortnightly, and gene expression analysis was performed at the end of the experiment. The results indicated that the recorded temperature-humidity index (THI) provided thermal comfort for KC and KCS while inducing extremely severe heat stress to the KHS and KHSS groups. Heat stress did not alter the feed intake, while the herbal supplement during heat stress increased the feed intake from day 30 onwards. Furthermore, heat stress significantly (<i>p</i> < 0.001) increased the water intake, while the herbal supplement did not alter the heat stress-induced water intake. In addition, neither heat stress nor herbal supplements influenced the body weight and allometric measurements studied. Furthermore, heat stress significantly (<i>p</i> < 0.01) decreased the level of plasma tri-iodo-thyronine (T<sub>3</sub>) and thyroxin (T<sub>4</sub>) and had a non-significant effect on plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1), while the herbal supplements significantly (<i>p</i> < 0.01) increased the levels of all these hormones studied. Likewise, in peripheral blood mononuclear cells (PBMCs) the expression patterns of <i>growth hormone receptor (GHR), Insulin-like growth factor 1 (IGF1)</i> and <i>prolactin receptor</i> (<i>PRLR)</i> were significantly (<i>p</i> < 0.001) downregulated during heat stress (0.25, 0.3, and 0.48-fold change, respectively). However, the herbal supplement significantly (<i>p</i> < 0.01) increased the heat stress-induced reduction in the expression pattern of these three genes (0.65, 0.61, and 0.61-fold change, respectively). Therefore, from this study, it could be concluded that although the herbal supplements did not bring positive changes in body weight and allometric measurements, it still had a beneficial impact on the endocrinology and genes governing growth performance in Kenguri ewes. Thus, the herbal feed additive used in the study shows promise for relieving heat stress in Kenguri ewes.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091285","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A study was designed to explore the possibility of using herbal supplementation to sustain growth performance during heat stress exposure in Kenguri sheep. This 60-day study was conducted on 24 Kenguri ewes (1-2 years old), randomly assigned to four treatment groups (n = 6 per group) as follows: KC (n = 6; Kenguri Control), KHS (n = 6; Kenguri Heat Stress), KCS (n = 6; Kenguri Control and herbal supplement), and KHSS (n = 6; Kenguri Heat Stress and herbal supplement). The herbal mixture of Ocimum sanctum (Tulsi), Emblica officinalis (Amla), Morinda citrifolia (Noni), Withania somnifera (Ashwagandha), and Phyllostachys edulis (Bamboo) was used in this study. The herbal supplement used in the present study was given to the KCS and KHSS groups' animals in dry powder form at a dose of 0.8 g/Kg BW/Day. All variables were recorded fortnightly, and gene expression analysis was performed at the end of the experiment. The results indicated that the recorded temperature-humidity index (THI) provided thermal comfort for KC and KCS while inducing extremely severe heat stress to the KHS and KHSS groups. Heat stress did not alter the feed intake, while the herbal supplement during heat stress increased the feed intake from day 30 onwards. Furthermore, heat stress significantly (p < 0.001) increased the water intake, while the herbal supplement did not alter the heat stress-induced water intake. In addition, neither heat stress nor herbal supplements influenced the body weight and allometric measurements studied. Furthermore, heat stress significantly (p < 0.01) decreased the level of plasma tri-iodo-thyronine (T3) and thyroxin (T4) and had a non-significant effect on plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1), while the herbal supplements significantly (p < 0.01) increased the levels of all these hormones studied. Likewise, in peripheral blood mononuclear cells (PBMCs) the expression patterns of growth hormone receptor (GHR), Insulin-like growth factor 1 (IGF1) and prolactin receptor (PRLR) were significantly (p < 0.001) downregulated during heat stress (0.25, 0.3, and 0.48-fold change, respectively). However, the herbal supplement significantly (p < 0.01) increased the heat stress-induced reduction in the expression pattern of these three genes (0.65, 0.61, and 0.61-fold change, respectively). Therefore, from this study, it could be concluded that although the herbal supplements did not bring positive changes in body weight and allometric measurements, it still had a beneficial impact on the endocrinology and genes governing growth performance in Kenguri ewes. Thus, the herbal feed additive used in the study shows promise for relieving heat stress in Kenguri ewes.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).