Meta-analysis of muscle transcriptome data identifies key genes influencing intramuscular fat content in pigs.

IF 2.4 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Yan Wang, Jiahao Wang, Yanhui Zhao, Xihui Sheng, Xiaolong Qi, Lei Zhou, Jianfeng Liu, Chuduan Wang, Jianliang Wu, Yongchun Cao, Kai Xing
{"title":"Meta-analysis of muscle transcriptome data identifies key genes influencing intramuscular fat content in pigs.","authors":"Yan Wang, Jiahao Wang, Yanhui Zhao, Xihui Sheng, Xiaolong Qi, Lei Zhou, Jianfeng Liu, Chuduan Wang, Jianliang Wu, Yongchun Cao, Kai Xing","doi":"10.5713/ab.24.0905","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Intramuscular fat (IMF) content is closely linked to meat quality, and the process of IMF deposition is intricate. Despite numerous transcriptomic studies on IMF, varying sample sizes and data analysis methods have led to inconsistent gene expression patterns and results. To identify the pivotal genes influencing pig IMF content, we performed a meta-analysis on 10 pig muscle transcriptome datasets with a total of eighty samples, including forty each of high and IMF samples.</p><p><strong>Methods: </strong>We used DESeq2 to analyze the high and low IMF groups for each of the 10 datasets, identifying differentially methylated genes in each dataset. To identify key genes affecting IMF content, we performed a meta-analysis of the differential expression results from the 10 datasets using MetaVolcanoR. Subsequently, we conducted PPI network analysis, as well as GO and KEGG functional enrichment analysis, and quantified the trait locus (QTL) analysis on the differentially expressed genes (DEGs).</p><p><strong>Results: </strong>The meta-analysis revealed 494 DEGs, with 321 upregulated and 173 downregulated DEGs observed in the high IMF group. These DEGs were found to be enriched in processes associated with adipocyte differentiation and fat anabolism. QTL analysis demonstrated that five DEGs, including FASN and SCD, corresponded to six QTLs associated with IMF.</p><p><strong>Conclusion: </strong>Our findings suggest that meta-analysis can effectively integrate data from multiple datasets to yield more reliable results. Using this approach, we identified the core gene cluster, including FASN, SCD, and PLIN1, LEP, and G0S2, that influence IMF content in pigs.</p>","PeriodicalId":7825,"journal":{"name":"Animal Bioscience","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Bioscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5713/ab.24.0905","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Intramuscular fat (IMF) content is closely linked to meat quality, and the process of IMF deposition is intricate. Despite numerous transcriptomic studies on IMF, varying sample sizes and data analysis methods have led to inconsistent gene expression patterns and results. To identify the pivotal genes influencing pig IMF content, we performed a meta-analysis on 10 pig muscle transcriptome datasets with a total of eighty samples, including forty each of high and IMF samples.

Methods: We used DESeq2 to analyze the high and low IMF groups for each of the 10 datasets, identifying differentially methylated genes in each dataset. To identify key genes affecting IMF content, we performed a meta-analysis of the differential expression results from the 10 datasets using MetaVolcanoR. Subsequently, we conducted PPI network analysis, as well as GO and KEGG functional enrichment analysis, and quantified the trait locus (QTL) analysis on the differentially expressed genes (DEGs).

Results: The meta-analysis revealed 494 DEGs, with 321 upregulated and 173 downregulated DEGs observed in the high IMF group. These DEGs were found to be enriched in processes associated with adipocyte differentiation and fat anabolism. QTL analysis demonstrated that five DEGs, including FASN and SCD, corresponded to six QTLs associated with IMF.

Conclusion: Our findings suggest that meta-analysis can effectively integrate data from multiple datasets to yield more reliable results. Using this approach, we identified the core gene cluster, including FASN, SCD, and PLIN1, LEP, and G0S2, that influence IMF content in pigs.

肌肉转录组数据的荟萃分析确定了影响猪肌内脂肪含量的关键基因。
目的:肌内脂肪含量与肉品质的关系密切,肌内脂肪沉积过程复杂。尽管对IMF进行了大量转录组学研究,但不同的样本量和数据分析方法导致基因表达模式和结果不一致。为了确定影响猪IMF含量的关键基因,我们对10个猪肌肉转录组数据集进行了荟萃分析,共80个样本,其中高和IMF样本各40个。方法:我们使用DESeq2分析10个数据集的高和低IMF组,识别每个数据集中的差异甲基化基因。为了确定影响IMF含量的关键基因,我们使用MetaVolcanoR对来自10个数据集的差异表达结果进行了荟萃分析。随后,我们进行了PPI网络分析,GO和KEGG功能富集分析,并对差异表达基因(DEGs)进行了QTL定量分析。结果:荟萃分析显示,在高IMF组中观察到494个DEGs,其中321个上调,173个下调。发现这些deg在与脂肪细胞分化和脂肪合成代谢相关的过程中富集。QTL分析表明,FASN和SCD等5个基因位点对应6个与IMF相关的QTL。结论:我们的研究结果表明,荟萃分析可以有效地整合来自多个数据集的数据,从而得出更可靠的结果。利用这种方法,我们确定了影响猪体内IMF含量的核心基因簇,包括FASN、SCD、PLIN1、LEP和G0S2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Animal Bioscience
Animal Bioscience AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
5.00
自引率
0.00%
发文量
223
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信