{"title":"Progress of mesenchymal stem cell-derived exosomes in targeted delivery of antitumor drugs.","authors":"Defa Huang, Wenlong Huang, Meijin Liu, Jie Chen, Dewang Xiao, Zongbo Peng, Haoquan He, Haibin Shen, Qing Jin, Linli Chen, Dingyu Rao, Minghong Zhao, Junyun Huang","doi":"10.1186/s12935-025-03795-x","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) are currently being used in clinical trials for the treatment of a wide range of diseases and have a wide range of applications in the fields of tissue engineering and regeneration. Exosomes are extracellular vesicles containing a variety of components such as proteins, nucleic acids and lipids, which are widely present in biological fluids and have the functions of participating in intercellular information transfer, immune response and tissue repair, and can also be used as carriers to target and deliver tumors to improve therapeutic effects. Mesenchymal stem cell-derived Exosomes (MSC-Exos), which have the advantages of low immunogenicity and high tumor homing ability, have attracted much attention in targeted drug delivery. Here, we review the current knowledge on the involvement of MSC-Exos in tumor progression and their potential as drug delivery systems in targeted therapies. It also discusses the advantages and prospects of MSC-Exos as a drug carrier and the challenges that still need to be overcome.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"169"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03795-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal stem cells (MSCs) are currently being used in clinical trials for the treatment of a wide range of diseases and have a wide range of applications in the fields of tissue engineering and regeneration. Exosomes are extracellular vesicles containing a variety of components such as proteins, nucleic acids and lipids, which are widely present in biological fluids and have the functions of participating in intercellular information transfer, immune response and tissue repair, and can also be used as carriers to target and deliver tumors to improve therapeutic effects. Mesenchymal stem cell-derived Exosomes (MSC-Exos), which have the advantages of low immunogenicity and high tumor homing ability, have attracted much attention in targeted drug delivery. Here, we review the current knowledge on the involvement of MSC-Exos in tumor progression and their potential as drug delivery systems in targeted therapies. It also discusses the advantages and prospects of MSC-Exos as a drug carrier and the challenges that still need to be overcome.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.